界面种子辅助的FAPbI3结晶和相稳定提高了全空气处理钙钛矿太阳能电池的性能

IF 3.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Yuan Liu, Xingyuan Zhou, Yupei Wu, Hongwei Zhang, Kun Cao
{"title":"界面种子辅助的FAPbI3结晶和相稳定提高了全空气处理钙钛矿太阳能电池的性能","authors":"Yuan Liu, Xingyuan Zhou, Yupei Wu, Hongwei Zhang, Kun Cao","doi":"10.1039/d4dt03120b","DOIUrl":null,"url":null,"abstract":"Formamidine lead triiodide (FAPbI3) has received significant attention in the field of perovskite solar cells (PSCs) owing to its excellent optoelectronic properties and high thermal stability. However, the photoactive α-FAPbI3 perovskites are highly susceptible to degradation into non-perovskite δ-FAPbI3 phases especially under humid conditions, which severely diminishes the device performance of FAPbI3 PSCs. Here, we propose an interfacial seeding strategy for regulating crystallization and stabilizing α-FAPbI3 perovskites in humid air. By post-treating the antisolvent-free, air-processed perovskite wet film with inorganic cesium lead triiodide (CsPbI3) nanocrystals, a functional seed layer is formed that effectively mitigates the erosion by humid air while facilitating the conversion of intermediates to the α-FAPbI3 phase. The interfacial seed-modified FAPbI3 perovskite films exhibit improved crystal quality and denser morphology. As a result, the efficiency of all-air-processed carbon-based PSCs is improved from 15.90% for the control to 18.04%. In addition, the unencapsulated PSCs based on interfacial seed-modified FAPbI3 films show improved environmental stability compared to the control counterparts, maintaining 80% of its initial efficiency after 60 days.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"55 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial seed-assisted FAPbI3 crystallization and phase stabilization enhances the performance of all-air-processed perovskite solar cells\",\"authors\":\"Yuan Liu, Xingyuan Zhou, Yupei Wu, Hongwei Zhang, Kun Cao\",\"doi\":\"10.1039/d4dt03120b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formamidine lead triiodide (FAPbI3) has received significant attention in the field of perovskite solar cells (PSCs) owing to its excellent optoelectronic properties and high thermal stability. However, the photoactive α-FAPbI3 perovskites are highly susceptible to degradation into non-perovskite δ-FAPbI3 phases especially under humid conditions, which severely diminishes the device performance of FAPbI3 PSCs. Here, we propose an interfacial seeding strategy for regulating crystallization and stabilizing α-FAPbI3 perovskites in humid air. By post-treating the antisolvent-free, air-processed perovskite wet film with inorganic cesium lead triiodide (CsPbI3) nanocrystals, a functional seed layer is formed that effectively mitigates the erosion by humid air while facilitating the conversion of intermediates to the α-FAPbI3 phase. The interfacial seed-modified FAPbI3 perovskite films exhibit improved crystal quality and denser morphology. As a result, the efficiency of all-air-processed carbon-based PSCs is improved from 15.90% for the control to 18.04%. In addition, the unencapsulated PSCs based on interfacial seed-modified FAPbI3 films show improved environmental stability compared to the control counterparts, maintaining 80% of its initial efficiency after 60 days.\",\"PeriodicalId\":71,\"journal\":{\"name\":\"Dalton Transactions\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dalton Transactions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4dt03120b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4dt03120b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

三碘化甲脒铅(FAPbI3)由于其优异的光电性能和较高的热稳定性在钙钛矿太阳能电池(PSCs)领域受到广泛关注。然而,光活性α-FAPbI3钙钛矿极易降解为非钙钛矿δ-FAPbI3相,特别是在潮湿条件下,这严重降低了FAPbI3 PSCs的器件性能。在此,我们提出了一种界面播种策略来调节α-FAPbI3钙钛矿在潮湿空气中的结晶和稳定。用无机三碘化铯铅(CsPbI3)纳米晶体后处理无抗溶剂的空气处理钙钛矿湿膜,形成功能种子层,有效减轻潮湿空气的侵蚀,同时促进中间体向α-FAPbI3相的转化。界面种子修饰的FAPbI3钙钛矿膜具有更好的晶体质量和更致密的形貌。结果,全空气处理碳基PSCs的效率从控制组的15.90%提高到18.04%。此外,基于界面种子修饰的FAPbI3膜的未封装psc与对照相比,表现出更好的环境稳定性,在60天后保持了80%的初始效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interfacial seed-assisted FAPbI3 crystallization and phase stabilization enhances the performance of all-air-processed perovskite solar cells
Formamidine lead triiodide (FAPbI3) has received significant attention in the field of perovskite solar cells (PSCs) owing to its excellent optoelectronic properties and high thermal stability. However, the photoactive α-FAPbI3 perovskites are highly susceptible to degradation into non-perovskite δ-FAPbI3 phases especially under humid conditions, which severely diminishes the device performance of FAPbI3 PSCs. Here, we propose an interfacial seeding strategy for regulating crystallization and stabilizing α-FAPbI3 perovskites in humid air. By post-treating the antisolvent-free, air-processed perovskite wet film with inorganic cesium lead triiodide (CsPbI3) nanocrystals, a functional seed layer is formed that effectively mitigates the erosion by humid air while facilitating the conversion of intermediates to the α-FAPbI3 phase. The interfacial seed-modified FAPbI3 perovskite films exhibit improved crystal quality and denser morphology. As a result, the efficiency of all-air-processed carbon-based PSCs is improved from 15.90% for the control to 18.04%. In addition, the unencapsulated PSCs based on interfacial seed-modified FAPbI3 films show improved environmental stability compared to the control counterparts, maintaining 80% of its initial efficiency after 60 days.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信