{"title":"双原子超表面中可控等离子体导模共振对圆二色性的反直觉反转","authors":"Jiaqi Cheng, Zhancheng Li, Duk-Yong Choi, Wenwei Liu, Yuebian Zhang, Shiwang Yu, Hua Cheng, Jianguo Tian, Shuqi Chen","doi":"10.1002/lpor.202401184","DOIUrl":null,"url":null,"abstract":"<p>Chiral metasurfaces, featuring customizable chiroptical response, have shown great potential across diverse applications, including optical sensing, chiral emission, and light spin detection. However, most previous studies have focused on chiroptical response stemming from the resonance of nanoresonators or their coupling. Here, the great capability of controlling nonlocal resonance for achieving versatile manipulation of circular dichroism (CD) is demonstrated. A counterintuitive sign reversal of CD is realized by modulating the collective interference of the plasmonic guided mode resonances (GMRs) within diatomic metasurfaces. The designed metasurfaces, composed of two nanoresonators, can effectively couple both orthogonal linear-polarized components of circularly polarized light to the same GMR. Through a simple adjustment of the spacing of nanoresonators to modulate the interference between GMRs, continuous variation and sign reversal of CD are achieved. Importantly, due to the fact that the modulation of GMRs does not impact the chiral resonant modes of the nanoresonators, the significant advantages of the designed metasurfaces in achieving chiral optical encryption are experimentally demonstrated. This work introduces an effective approach for the continuous manipulation of CD without altering the structural geometric chirality. It provides novel insights into exploring chiroptical mechanisms and holds promise for applications in chiral sensing and light spin detection.</p>","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"19 8","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counterintuitive Reversal of Circular Dichroism via Controllable Plasmonic Guided Mode Resonance in Diatomic Metasurfaces\",\"authors\":\"Jiaqi Cheng, Zhancheng Li, Duk-Yong Choi, Wenwei Liu, Yuebian Zhang, Shiwang Yu, Hua Cheng, Jianguo Tian, Shuqi Chen\",\"doi\":\"10.1002/lpor.202401184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chiral metasurfaces, featuring customizable chiroptical response, have shown great potential across diverse applications, including optical sensing, chiral emission, and light spin detection. However, most previous studies have focused on chiroptical response stemming from the resonance of nanoresonators or their coupling. Here, the great capability of controlling nonlocal resonance for achieving versatile manipulation of circular dichroism (CD) is demonstrated. A counterintuitive sign reversal of CD is realized by modulating the collective interference of the plasmonic guided mode resonances (GMRs) within diatomic metasurfaces. The designed metasurfaces, composed of two nanoresonators, can effectively couple both orthogonal linear-polarized components of circularly polarized light to the same GMR. Through a simple adjustment of the spacing of nanoresonators to modulate the interference between GMRs, continuous variation and sign reversal of CD are achieved. Importantly, due to the fact that the modulation of GMRs does not impact the chiral resonant modes of the nanoresonators, the significant advantages of the designed metasurfaces in achieving chiral optical encryption are experimentally demonstrated. This work introduces an effective approach for the continuous manipulation of CD without altering the structural geometric chirality. It provides novel insights into exploring chiroptical mechanisms and holds promise for applications in chiral sensing and light spin detection.</p>\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"19 8\",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202401184\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202401184","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Counterintuitive Reversal of Circular Dichroism via Controllable Plasmonic Guided Mode Resonance in Diatomic Metasurfaces
Chiral metasurfaces, featuring customizable chiroptical response, have shown great potential across diverse applications, including optical sensing, chiral emission, and light spin detection. However, most previous studies have focused on chiroptical response stemming from the resonance of nanoresonators or their coupling. Here, the great capability of controlling nonlocal resonance for achieving versatile manipulation of circular dichroism (CD) is demonstrated. A counterintuitive sign reversal of CD is realized by modulating the collective interference of the plasmonic guided mode resonances (GMRs) within diatomic metasurfaces. The designed metasurfaces, composed of two nanoresonators, can effectively couple both orthogonal linear-polarized components of circularly polarized light to the same GMR. Through a simple adjustment of the spacing of nanoresonators to modulate the interference between GMRs, continuous variation and sign reversal of CD are achieved. Importantly, due to the fact that the modulation of GMRs does not impact the chiral resonant modes of the nanoresonators, the significant advantages of the designed metasurfaces in achieving chiral optical encryption are experimentally demonstrated. This work introduces an effective approach for the continuous manipulation of CD without altering the structural geometric chirality. It provides novel insights into exploring chiroptical mechanisms and holds promise for applications in chiral sensing and light spin detection.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.