Cédric Leau, Yu Wang, Charlotte Gervillié-Mouravieff, Steven T Boles, Xiang-Hua Zhang, Simon Coudray, Catherine Boussard-Plédel, Jean-Marie Tarascon
{"title":"利用operando光纤红外光谱和多元曲线回归跟踪固体电解质间相动力学","authors":"Cédric Leau, Yu Wang, Charlotte Gervillié-Mouravieff, Steven T Boles, Xiang-Hua Zhang, Simon Coudray, Catherine Boussard-Plédel, Jean-Marie Tarascon","doi":"10.1038/s41467-024-55339-y","DOIUrl":null,"url":null,"abstract":"<p>As batteries drive the transition to electrified transportation and energy systems, ensuring their quality, reliability, lifetime, and safety is crucial. While the solid electrolyte interphase (SEI) is known to govern these performance characteristics, its dynamic nature makes understanding its nucleation, growth, and composition an ambitious, yet elusive aspiration. This work employs chalcogenide fibres embedded in negative electrode materials for operando Infra-red Fibre-optic Evanescent Wave Spectroscopy (IR-FEWS), combined with Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) algorithms for spectra analysis. By establishing molecular fingerprints that can be used to identify reaction products, IR-FEWS combined with MCR-ALS enables improved understanding of SEI evolution during cell formation with notable differences stemming from electrolyte or anode material. For example, despite operating at an elevated potential, lithium titanate’s SEI has intrinsic instability, evidenced by continued carbonate formation. This approach leads the hunt for the SEI down a new path, giving empirical formulations theoretical roots.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking solid electrolyte interphase dynamics using operando fibre-optic infra-red spectroscopy and multivariate curve regression\",\"authors\":\"Cédric Leau, Yu Wang, Charlotte Gervillié-Mouravieff, Steven T Boles, Xiang-Hua Zhang, Simon Coudray, Catherine Boussard-Plédel, Jean-Marie Tarascon\",\"doi\":\"10.1038/s41467-024-55339-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As batteries drive the transition to electrified transportation and energy systems, ensuring their quality, reliability, lifetime, and safety is crucial. While the solid electrolyte interphase (SEI) is known to govern these performance characteristics, its dynamic nature makes understanding its nucleation, growth, and composition an ambitious, yet elusive aspiration. This work employs chalcogenide fibres embedded in negative electrode materials for operando Infra-red Fibre-optic Evanescent Wave Spectroscopy (IR-FEWS), combined with Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) algorithms for spectra analysis. By establishing molecular fingerprints that can be used to identify reaction products, IR-FEWS combined with MCR-ALS enables improved understanding of SEI evolution during cell formation with notable differences stemming from electrolyte or anode material. For example, despite operating at an elevated potential, lithium titanate’s SEI has intrinsic instability, evidenced by continued carbonate formation. This approach leads the hunt for the SEI down a new path, giving empirical formulations theoretical roots.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-55339-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55339-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Tracking solid electrolyte interphase dynamics using operando fibre-optic infra-red spectroscopy and multivariate curve regression
As batteries drive the transition to electrified transportation and energy systems, ensuring their quality, reliability, lifetime, and safety is crucial. While the solid electrolyte interphase (SEI) is known to govern these performance characteristics, its dynamic nature makes understanding its nucleation, growth, and composition an ambitious, yet elusive aspiration. This work employs chalcogenide fibres embedded in negative electrode materials for operando Infra-red Fibre-optic Evanescent Wave Spectroscopy (IR-FEWS), combined with Multivariate Curve Resolution by Alternating Least Squares (MCR-ALS) algorithms for spectra analysis. By establishing molecular fingerprints that can be used to identify reaction products, IR-FEWS combined with MCR-ALS enables improved understanding of SEI evolution during cell formation with notable differences stemming from electrolyte or anode material. For example, despite operating at an elevated potential, lithium titanate’s SEI has intrinsic instability, evidenced by continued carbonate formation. This approach leads the hunt for the SEI down a new path, giving empirical formulations theoretical roots.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.