基于图神经网络的高级迁移学习辅助高能材料性能预测

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Jianjian Hu, Jun-Xuan Jin, Xiao-Jing Hou, Chen-Hao Rao, Yuchen He, Ke-Jun Wu
{"title":"基于图神经网络的高级迁移学习辅助高能材料性能预测","authors":"Jianjian Hu, Jun-Xuan Jin, Xiao-Jing Hou, Chen-Hao Rao, Yuchen He, Ke-Jun Wu","doi":"10.1021/acs.iecr.4c03566","DOIUrl":null,"url":null,"abstract":"In this study, we explore the use of transfer learning to predict the properties of energetic materials using a force-field-inspired transformer graph neural network (FFiTrNet). We began by pretraining the model on a large data set of CHNOF compounds and then fine-tuning it on a smaller data set of experimental enthalpy of formation data for energetic materials. Our results show that transfer learning significantly enhances the accuracy of predicting the enthalpy of formation, with a reduction in mean absolute error and root-mean-square error compared to direct training on the smaller data set. Furthermore, we demonstrate the effectiveness of transfer learning in predicting other properties of energetic materials, highlighting its potential to improve the predictive capabilities of machine learning models for a range of energetic materials properties. The result is the most accurate among the state-of-the-art models for predicting energetic material properties. The data set used in the fine-tuning enriches the database of energetic materials’ properties, making this valuable data publicly available for future research.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"55 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assisted Energetic Material Property Prediction through Advanced Transfer Learning with Graph Neural Networks\",\"authors\":\"Jianjian Hu, Jun-Xuan Jin, Xiao-Jing Hou, Chen-Hao Rao, Yuchen He, Ke-Jun Wu\",\"doi\":\"10.1021/acs.iecr.4c03566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we explore the use of transfer learning to predict the properties of energetic materials using a force-field-inspired transformer graph neural network (FFiTrNet). We began by pretraining the model on a large data set of CHNOF compounds and then fine-tuning it on a smaller data set of experimental enthalpy of formation data for energetic materials. Our results show that transfer learning significantly enhances the accuracy of predicting the enthalpy of formation, with a reduction in mean absolute error and root-mean-square error compared to direct training on the smaller data set. Furthermore, we demonstrate the effectiveness of transfer learning in predicting other properties of energetic materials, highlighting its potential to improve the predictive capabilities of machine learning models for a range of energetic materials properties. The result is the most accurate among the state-of-the-art models for predicting energetic material properties. The data set used in the fine-tuning enriches the database of energetic materials’ properties, making this valuable data publicly available for future research.\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.iecr.4c03566\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c03566","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们探索了使用迁移学习来预测含能材料的性质,使用力场启发的变压器图神经网络(FFiTrNet)。我们首先在CHNOF化合物的大数据集上对模型进行预训练,然后在含能材料的实验生成焓数据的小数据集上对模型进行微调。我们的研究结果表明,与在较小的数据集上直接训练相比,迁移学习显著提高了预测生成焓的准确性,减少了平均绝对误差和均方根误差。此外,我们证明了迁移学习在预测含能材料的其他特性方面的有效性,强调了它在提高机器学习模型对一系列含能材料特性的预测能力方面的潜力。结果是最准确的最先进的模型预测高能材料的性质。微调中使用的数据集丰富了含能材料属性数据库,使这些有价值的数据可以公开用于未来的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Assisted Energetic Material Property Prediction through Advanced Transfer Learning with Graph Neural Networks

Assisted Energetic Material Property Prediction through Advanced Transfer Learning with Graph Neural Networks
In this study, we explore the use of transfer learning to predict the properties of energetic materials using a force-field-inspired transformer graph neural network (FFiTrNet). We began by pretraining the model on a large data set of CHNOF compounds and then fine-tuning it on a smaller data set of experimental enthalpy of formation data for energetic materials. Our results show that transfer learning significantly enhances the accuracy of predicting the enthalpy of formation, with a reduction in mean absolute error and root-mean-square error compared to direct training on the smaller data set. Furthermore, we demonstrate the effectiveness of transfer learning in predicting other properties of energetic materials, highlighting its potential to improve the predictive capabilities of machine learning models for a range of energetic materials properties. The result is the most accurate among the state-of-the-art models for predicting energetic material properties. The data set used in the fine-tuning enriches the database of energetic materials’ properties, making this valuable data publicly available for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信