量子通信中纠缠辅助能力的基本限制

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Lasse H. Wolff, Paula Belzig, Matthias Christandl, Bergfinnur Durhuus, Marco Tomamichel
{"title":"量子通信中纠缠辅助能力的基本限制","authors":"Lasse H. Wolff, Paula Belzig, Matthias Christandl, Bergfinnur Durhuus, Marco Tomamichel","doi":"10.1103/physrevlett.134.020802","DOIUrl":null,"url":null,"abstract":"The optimal rate of reliable communication over a quantum channel can be enhanced by preshared entanglement. Whereas the enhancement may be unbounded in infinite-dimensional settings even when the input power is constrained, a long-standing conjecture asserts that the ratio between the entanglement-assisted and unassisted classical capacities is bounded in finite-dimensional settings [Bennett , ]. In this Letter, we prove this conjecture by showing that their ratio is upper bounded by o</a:mi>(</a:mo>d</a:mi></a:mrow>2</a:mn></a:mrow></a:msup>)</a:mo></a:mrow></a:math>, where <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>d</e:mi></e:math> is the input dimension of the channel. An application to quantum communication with noisy encoders and decoders is given. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"11 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fundamental Limit on the Power of Entanglement Assistance in Quantum Communication\",\"authors\":\"Lasse H. Wolff, Paula Belzig, Matthias Christandl, Bergfinnur Durhuus, Marco Tomamichel\",\"doi\":\"10.1103/physrevlett.134.020802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimal rate of reliable communication over a quantum channel can be enhanced by preshared entanglement. Whereas the enhancement may be unbounded in infinite-dimensional settings even when the input power is constrained, a long-standing conjecture asserts that the ratio between the entanglement-assisted and unassisted classical capacities is bounded in finite-dimensional settings [Bennett , ]. In this Letter, we prove this conjecture by showing that their ratio is upper bounded by o</a:mi>(</a:mo>d</a:mi></a:mrow>2</a:mn></a:mrow></a:msup>)</a:mo></a:mrow></a:math>, where <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mi>d</e:mi></e:math> is the input dimension of the channel. An application to quantum communication with noisy encoders and decoders is given. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.134.020802\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.020802","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过预共享纠缠可以提高量子信道上可靠通信的最佳速率。尽管在无限维环境中,即使输入功率受到限制,增强也可能是无界的,但一个长期存在的猜想断言,在有限维环境中,纠缠辅助和非辅助的经典能力之间的比率是有界的[Bennett,]。在这封信中,我们证明了这个猜想,证明了它们的比值的上界是0 (d2),其中d是通道的输入维数。给出了带噪声的编码器和解码器在量子通信中的应用。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fundamental Limit on the Power of Entanglement Assistance in Quantum Communication
The optimal rate of reliable communication over a quantum channel can be enhanced by preshared entanglement. Whereas the enhancement may be unbounded in infinite-dimensional settings even when the input power is constrained, a long-standing conjecture asserts that the ratio between the entanglement-assisted and unassisted classical capacities is bounded in finite-dimensional settings [Bennett , ]. In this Letter, we prove this conjecture by showing that their ratio is upper bounded by o(d2), where d is the input dimension of the channel. An application to quantum communication with noisy encoders and decoders is given. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信