Ni An, Guzailinuer Yasen, Ximu Li, Xianbao Shi, Yongjun Wang, Hongzhuo Liu
{"title":"含有触媒的纳米颗粒佐剂可增强免疫耐受,加速头发再生","authors":"Ni An, Guzailinuer Yasen, Ximu Li, Xianbao Shi, Yongjun Wang, Hongzhuo Liu","doi":"10.1021/acsami.4c17068","DOIUrl":null,"url":null,"abstract":"Alopecia areata (AA) is a prevalent autoimmune condition that causes sudden hair loss and poses significant psychological challenges to affected individuals. Current treatments, including corticosteroids and Janus kinase inhibitors, fail to provide long-term efficacy due to adverse effects and relapse after cessation. This study introduces a nanoparticle (NP) system that codeliver diphenylcyclopropenone (DPCP) and rapamycin (RAPA) prodrugs to induce immune tolerance and promote hair regeneration. The results demonstrated that the coassembled NPs exhibited uniformity and stability, were efficiently taken up by antigen-presenting cells (APCs), and successfully induced dendritic cells (DCs) to differentiate into tolerogenic phenotypes <i>in vitro</i>. <i>In vivo</i> studies on a mouse model of alopecia showed that these NPs significantly accelerated the transition of hair follicles from the telogen phase to the anagen phase, promoting hair regrowth. This research presents a promising therapeutic strategy for AA and offers insights into treating autoimmune diseases where autoantigens are unclear.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"55 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoparticle Adjuvants Incorporating Haptens Drive Potent Immune Tolerance to Accelerate Hair Regrowth\",\"authors\":\"Ni An, Guzailinuer Yasen, Ximu Li, Xianbao Shi, Yongjun Wang, Hongzhuo Liu\",\"doi\":\"10.1021/acsami.4c17068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alopecia areata (AA) is a prevalent autoimmune condition that causes sudden hair loss and poses significant psychological challenges to affected individuals. Current treatments, including corticosteroids and Janus kinase inhibitors, fail to provide long-term efficacy due to adverse effects and relapse after cessation. This study introduces a nanoparticle (NP) system that codeliver diphenylcyclopropenone (DPCP) and rapamycin (RAPA) prodrugs to induce immune tolerance and promote hair regeneration. The results demonstrated that the coassembled NPs exhibited uniformity and stability, were efficiently taken up by antigen-presenting cells (APCs), and successfully induced dendritic cells (DCs) to differentiate into tolerogenic phenotypes <i>in vitro</i>. <i>In vivo</i> studies on a mouse model of alopecia showed that these NPs significantly accelerated the transition of hair follicles from the telogen phase to the anagen phase, promoting hair regrowth. This research presents a promising therapeutic strategy for AA and offers insights into treating autoimmune diseases where autoantigens are unclear.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c17068\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17068","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Alopecia areata (AA) is a prevalent autoimmune condition that causes sudden hair loss and poses significant psychological challenges to affected individuals. Current treatments, including corticosteroids and Janus kinase inhibitors, fail to provide long-term efficacy due to adverse effects and relapse after cessation. This study introduces a nanoparticle (NP) system that codeliver diphenylcyclopropenone (DPCP) and rapamycin (RAPA) prodrugs to induce immune tolerance and promote hair regeneration. The results demonstrated that the coassembled NPs exhibited uniformity and stability, were efficiently taken up by antigen-presenting cells (APCs), and successfully induced dendritic cells (DCs) to differentiate into tolerogenic phenotypes in vitro. In vivo studies on a mouse model of alopecia showed that these NPs significantly accelerated the transition of hair follicles from the telogen phase to the anagen phase, promoting hair regrowth. This research presents a promising therapeutic strategy for AA and offers insights into treating autoimmune diseases where autoantigens are unclear.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.