Tsung-Wei Huang, Yi-Hsiang Chen, Jacob J. Lin, Chuin-Shan Chen
{"title":"利用合成 BIM 数据和领域适应性,无需人工标注的深度学习用于现场钢筋实例分割","authors":"Tsung-Wei Huang, Yi-Hsiang Chen, Jacob J. Lin, Chuin-Shan Chen","doi":"10.1016/j.autcon.2024.105953","DOIUrl":null,"url":null,"abstract":"On-site rebar inspection is crucial for structural safety but remains labor-intensive and time-consuming. While deep learning presents a promising solution, existing research often relies on limited real-world labeled data. This paper introduces a framework to train a deep learning model for on-site rebar instance segmentation without human labeling. Synthetic data are generated from BIM models, creating a Synthetic On-site Rebar Dataset (SORD) with 25,287 labeled images. Domain adaptation is incorporated to bridge the gap between synthetic and real-world non-labeled data. This approach eliminates the need for human labeling. It significantly enhances model performance, achieving a threefold improvement in Average Precision (AP) metrics compared to models trained on limited real-world data. Additionally, the proposed method demonstrates superior performance across various on-site rebar images collected online, underscoring its generalizability and practical applications.","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"8 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning without human labeling for on-site rebar instance segmentation using synthetic BIM data and domain adaptation\",\"authors\":\"Tsung-Wei Huang, Yi-Hsiang Chen, Jacob J. Lin, Chuin-Shan Chen\",\"doi\":\"10.1016/j.autcon.2024.105953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-site rebar inspection is crucial for structural safety but remains labor-intensive and time-consuming. While deep learning presents a promising solution, existing research often relies on limited real-world labeled data. This paper introduces a framework to train a deep learning model for on-site rebar instance segmentation without human labeling. Synthetic data are generated from BIM models, creating a Synthetic On-site Rebar Dataset (SORD) with 25,287 labeled images. Domain adaptation is incorporated to bridge the gap between synthetic and real-world non-labeled data. This approach eliminates the need for human labeling. It significantly enhances model performance, achieving a threefold improvement in Average Precision (AP) metrics compared to models trained on limited real-world data. Additionally, the proposed method demonstrates superior performance across various on-site rebar images collected online, underscoring its generalizability and practical applications.\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.autcon.2024.105953\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.autcon.2024.105953","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Deep learning without human labeling for on-site rebar instance segmentation using synthetic BIM data and domain adaptation
On-site rebar inspection is crucial for structural safety but remains labor-intensive and time-consuming. While deep learning presents a promising solution, existing research often relies on limited real-world labeled data. This paper introduces a framework to train a deep learning model for on-site rebar instance segmentation without human labeling. Synthetic data are generated from BIM models, creating a Synthetic On-site Rebar Dataset (SORD) with 25,287 labeled images. Domain adaptation is incorporated to bridge the gap between synthetic and real-world non-labeled data. This approach eliminates the need for human labeling. It significantly enhances model performance, achieving a threefold improvement in Average Precision (AP) metrics compared to models trained on limited real-world data. Additionally, the proposed method demonstrates superior performance across various on-site rebar images collected online, underscoring its generalizability and practical applications.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.