Yancheng Wang, Xin Xie, Haobing Zhang, Xintao Fan, Weiwei Wang
{"title":"降低合成反铁磁体系中离子脱落电流","authors":"Yancheng Wang, Xin Xie, Haobing Zhang, Xintao Fan, Weiwei Wang","doi":"10.1063/5.0242419","DOIUrl":null,"url":null,"abstract":"Magnetic skyrmions, as topological spin textures, offer great potential for next-generation spintronic applications. Skyrmions in artificially synthesized antiferromagnets (SAFs) are particularly promising due to their ability to suppress the skyrmion Hall effect and achieve faster dynamics, making them highly attractive for spintronic devices. However, the critical current density required to drive SAF skyrmions using spin-transfer torque is significantly higher than in conventional ferromagnetic systems. In this work, we analytically and numerically demonstrate that the critical current density for SAF skyrmions can be significantly reduced by applying distinct currents to different layers within the system. This approach can be applied to periodically pinned skyrmions in SAFs, offering the dual benefits of a suppressed Hall effect and a reduced critical current density. Our findings pave the way for more efficient manipulation of SAF skyrmions in spintronic device architectures.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"55 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lowering the skyrmion depinning current in synthetic antiferromagnetic systems\",\"authors\":\"Yancheng Wang, Xin Xie, Haobing Zhang, Xintao Fan, Weiwei Wang\",\"doi\":\"10.1063/5.0242419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic skyrmions, as topological spin textures, offer great potential for next-generation spintronic applications. Skyrmions in artificially synthesized antiferromagnets (SAFs) are particularly promising due to their ability to suppress the skyrmion Hall effect and achieve faster dynamics, making them highly attractive for spintronic devices. However, the critical current density required to drive SAF skyrmions using spin-transfer torque is significantly higher than in conventional ferromagnetic systems. In this work, we analytically and numerically demonstrate that the critical current density for SAF skyrmions can be significantly reduced by applying distinct currents to different layers within the system. This approach can be applied to periodically pinned skyrmions in SAFs, offering the dual benefits of a suppressed Hall effect and a reduced critical current density. Our findings pave the way for more efficient manipulation of SAF skyrmions in spintronic device architectures.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0242419\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0242419","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Lowering the skyrmion depinning current in synthetic antiferromagnetic systems
Magnetic skyrmions, as topological spin textures, offer great potential for next-generation spintronic applications. Skyrmions in artificially synthesized antiferromagnets (SAFs) are particularly promising due to their ability to suppress the skyrmion Hall effect and achieve faster dynamics, making them highly attractive for spintronic devices. However, the critical current density required to drive SAF skyrmions using spin-transfer torque is significantly higher than in conventional ferromagnetic systems. In this work, we analytically and numerically demonstrate that the critical current density for SAF skyrmions can be significantly reduced by applying distinct currents to different layers within the system. This approach can be applied to periodically pinned skyrmions in SAFs, offering the dual benefits of a suppressed Hall effect and a reduced critical current density. Our findings pave the way for more efficient manipulation of SAF skyrmions in spintronic device architectures.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.