量子化学精密炼金术自由能计算

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Radek Crha, Peter Poliak, Michael Gillhofer, Chris Oostenbrink
{"title":"量子化学精密炼金术自由能计算","authors":"Radek Crha, Peter Poliak, Michael Gillhofer, Chris Oostenbrink","doi":"10.1021/acs.jpclett.4c03213","DOIUrl":null,"url":null,"abstract":"In the past decade, machine-learned potentials (MLP) have demonstrated the capability to predict various QM properties learned from a set of reference QM calculations. Accordingly, hybrid QM/MM simulations can be accelerated by replacement of expensive QM calculations with efficient MLP energy predictions. At the same time, alchemical free-energy perturbations (FEP) remain unachievable at the QM level of theory. In this work, we extend the capabilities of the Buffer Region Neural Network (BuRNN) QM/MM scheme toward FEP. BuRNN introduces a buffer region that experiences full electronic polarization by the QM region to minimize artifacts at the QM/MM interface. An MLP is used to predict the energies for the QM region and its interactions with the buffer region. Furthermore, BuRNN allows us to implement FEP directly into the MLP Hamiltonian. Here, we describe the alchemical change from methanol to methane in water at the MLP/MM level as a proof of concept.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"27 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alchemical Free-Energy Calculations at Quantum-Chemical Precision\",\"authors\":\"Radek Crha, Peter Poliak, Michael Gillhofer, Chris Oostenbrink\",\"doi\":\"10.1021/acs.jpclett.4c03213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past decade, machine-learned potentials (MLP) have demonstrated the capability to predict various QM properties learned from a set of reference QM calculations. Accordingly, hybrid QM/MM simulations can be accelerated by replacement of expensive QM calculations with efficient MLP energy predictions. At the same time, alchemical free-energy perturbations (FEP) remain unachievable at the QM level of theory. In this work, we extend the capabilities of the Buffer Region Neural Network (BuRNN) QM/MM scheme toward FEP. BuRNN introduces a buffer region that experiences full electronic polarization by the QM region to minimize artifacts at the QM/MM interface. An MLP is used to predict the energies for the QM region and its interactions with the buffer region. Furthermore, BuRNN allows us to implement FEP directly into the MLP Hamiltonian. Here, we describe the alchemical change from methanol to methane in water at the MLP/MM level as a proof of concept.\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.4c03213\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03213","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年中,机器学习电位(MLP)已经证明了预测从一组参考QM计算中学习到的各种QM属性的能力。因此,通过用高效的MLP能量预测取代昂贵的QM计算,可以加速混合QM/MM模拟。与此同时,炼金术的自由能微扰(FEP)仍然无法在理论的量子力学水平上实现。在这项工作中,我们将缓冲区神经网络(BuRNN) QM/MM方案的功能扩展到FEP。BuRNN引入了一个缓冲区,该缓冲区经历了QM区域的完全电子极化,以最小化QM/MM界面的伪影。用MLP来预测QM区域的能量及其与缓冲区的相互作用。此外,BuRNN允许我们将FEP直接实现到MLP哈密顿量中。在这里,我们描述了在MLP/MM水平上从甲醇到甲烷在水中的炼金术变化,作为概念的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Alchemical Free-Energy Calculations at Quantum-Chemical Precision

Alchemical Free-Energy Calculations at Quantum-Chemical Precision
In the past decade, machine-learned potentials (MLP) have demonstrated the capability to predict various QM properties learned from a set of reference QM calculations. Accordingly, hybrid QM/MM simulations can be accelerated by replacement of expensive QM calculations with efficient MLP energy predictions. At the same time, alchemical free-energy perturbations (FEP) remain unachievable at the QM level of theory. In this work, we extend the capabilities of the Buffer Region Neural Network (BuRNN) QM/MM scheme toward FEP. BuRNN introduces a buffer region that experiences full electronic polarization by the QM region to minimize artifacts at the QM/MM interface. An MLP is used to predict the energies for the QM region and its interactions with the buffer region. Furthermore, BuRNN allows us to implement FEP directly into the MLP Hamiltonian. Here, we describe the alchemical change from methanol to methane in water at the MLP/MM level as a proof of concept.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信