{"title":"富锂层状氧化物正极材料对无阳极锂金属电池多余锂储量的调节","authors":"Xuejian Shi, Peiyan Sun, Chunyu Zhao, Jingyu Zhang, Jin Zhang, Teng Ma, Shenghan Wang, Chenglin Sun, Zhihui Sun, Yizhan Wang, Yingjin Wei","doi":"10.1021/acs.nanolett.4c05721","DOIUrl":null,"url":null,"abstract":"Li-rich layered oxide (LRO) cathode material is utilized in anode-free Li metal batteries to provide extra Li inventory, compensating for the constant Li loss during cycling. The Li compensation mechanism of LRO in the anode-free system is elucidated by exploring the reversible/irreversible Li consumption behaviors. Moreover, the relationship between cathode areal capacity, Li inventory, and the cycling performance of the Cu||LRO cell is quantitatively analyzed. The well-designed Cu||LRO anode-free cell demonstrates 51% capacity retention after 60 cycles at a practical areal capacity of 5.0 mAh cm<sup>–2</sup>, overwhelming the 0.6% capacity retention for Cu||NCM523. Further optimization with an artificial anode protection layer and a fully fluorinated electrolyte enhances the capacity retention of Cu||LRO to 61.4% and 71.5% after 60 cycles, respectively. Combining its low initial Coulombic efficiency and high specific energy, the LRO cathode shows great prospects in the future development of high energy and long lifespan anode-free Li metal batteries.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"31 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation of Extra Li Inventory in Anode-Free Lithium Metal Batteries by Li-Rich Layered Oxide Cathode Materials\",\"authors\":\"Xuejian Shi, Peiyan Sun, Chunyu Zhao, Jingyu Zhang, Jin Zhang, Teng Ma, Shenghan Wang, Chenglin Sun, Zhihui Sun, Yizhan Wang, Yingjin Wei\",\"doi\":\"10.1021/acs.nanolett.4c05721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Li-rich layered oxide (LRO) cathode material is utilized in anode-free Li metal batteries to provide extra Li inventory, compensating for the constant Li loss during cycling. The Li compensation mechanism of LRO in the anode-free system is elucidated by exploring the reversible/irreversible Li consumption behaviors. Moreover, the relationship between cathode areal capacity, Li inventory, and the cycling performance of the Cu||LRO cell is quantitatively analyzed. The well-designed Cu||LRO anode-free cell demonstrates 51% capacity retention after 60 cycles at a practical areal capacity of 5.0 mAh cm<sup>–2</sup>, overwhelming the 0.6% capacity retention for Cu||NCM523. Further optimization with an artificial anode protection layer and a fully fluorinated electrolyte enhances the capacity retention of Cu||LRO to 61.4% and 71.5% after 60 cycles, respectively. Combining its low initial Coulombic efficiency and high specific energy, the LRO cathode shows great prospects in the future development of high energy and long lifespan anode-free Li metal batteries.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c05721\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05721","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Regulation of Extra Li Inventory in Anode-Free Lithium Metal Batteries by Li-Rich Layered Oxide Cathode Materials
Li-rich layered oxide (LRO) cathode material is utilized in anode-free Li metal batteries to provide extra Li inventory, compensating for the constant Li loss during cycling. The Li compensation mechanism of LRO in the anode-free system is elucidated by exploring the reversible/irreversible Li consumption behaviors. Moreover, the relationship between cathode areal capacity, Li inventory, and the cycling performance of the Cu||LRO cell is quantitatively analyzed. The well-designed Cu||LRO anode-free cell demonstrates 51% capacity retention after 60 cycles at a practical areal capacity of 5.0 mAh cm–2, overwhelming the 0.6% capacity retention for Cu||NCM523. Further optimization with an artificial anode protection layer and a fully fluorinated electrolyte enhances the capacity retention of Cu||LRO to 61.4% and 71.5% after 60 cycles, respectively. Combining its low initial Coulombic efficiency and high specific energy, the LRO cathode shows great prospects in the future development of high energy and long lifespan anode-free Li metal batteries.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.