沸石咪唑酸骨架-8与des处理丝瓜海绵的结合研究

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Hong Liu, Wenzhuang Wang, Qinghua Chuai, Wenling Xu, Feng Guo
{"title":"沸石咪唑酸骨架-8与des处理丝瓜海绵的结合研究","authors":"Hong Liu, Wenzhuang Wang, Qinghua Chuai, Wenling Xu, Feng Guo","doi":"10.1021/acs.langmuir.4c04434","DOIUrl":null,"url":null,"abstract":"The pervasive presence of toluene in aquatic environments, primarily due to oil spills and industrial effluents, necessitates the development of effective and sustainable remediation strategies. This study introduces ZIF-8@DES-treated loofah sponge (ZIF-8@DLS), a novel adsorbent composite material, synthesized via an in situ process that integrates the high surface area of ZIF-8 with the natural loofah sponge. The composite was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), confirming the successful loading of ZIF-8 onto the loofah substrate. The adsorption capacity of ZIF-8@DLS for toluene was evaluated, achieving a maximum of 145.3 mg/g with an efficiency of 72% under standard conditions. Kinetic studies revealed that the adsorption process predominantly followed a pseudo-second-order model, indicative of chemisorption. The adsorption isotherm data were found to align more closely with the Freundlich model, suggesting a multilayer adsorption mechanism on the composite’s heterogeneous surface. The ZIF-8@DLS composite demonstrates a promising synergy of high adsorption performance, cost-effectiveness, facile synthesis, and environmental benignity, positioning it as a candidate for practical applications in wastewater treatment and adsorptive separation processes.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"5 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Zeolitic Imidazolate Framework-8 with DES-Treated Loofah Sponge for Enhanced Toluene Adsorption\",\"authors\":\"Hong Liu, Wenzhuang Wang, Qinghua Chuai, Wenling Xu, Feng Guo\",\"doi\":\"10.1021/acs.langmuir.4c04434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pervasive presence of toluene in aquatic environments, primarily due to oil spills and industrial effluents, necessitates the development of effective and sustainable remediation strategies. This study introduces ZIF-8@DES-treated loofah sponge (ZIF-8@DLS), a novel adsorbent composite material, synthesized via an in situ process that integrates the high surface area of ZIF-8 with the natural loofah sponge. The composite was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), confirming the successful loading of ZIF-8 onto the loofah substrate. The adsorption capacity of ZIF-8@DLS for toluene was evaluated, achieving a maximum of 145.3 mg/g with an efficiency of 72% under standard conditions. Kinetic studies revealed that the adsorption process predominantly followed a pseudo-second-order model, indicative of chemisorption. The adsorption isotherm data were found to align more closely with the Freundlich model, suggesting a multilayer adsorption mechanism on the composite’s heterogeneous surface. The ZIF-8@DLS composite demonstrates a promising synergy of high adsorption performance, cost-effectiveness, facile synthesis, and environmental benignity, positioning it as a candidate for practical applications in wastewater treatment and adsorptive separation processes.\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c04434\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04434","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水生环境中普遍存在的甲苯,主要是由于石油泄漏和工业废水,因此有必要制定有效和可持续的补救战略。本研究介绍了一种将ZIF-8的高表面积与天然丝瓜海绵相结合的新型吸附复合材料ZIF-8@DES-treated丝瓜海绵(ZIF-8@DLS)。利用扫描电镜(SEM)、x射线衍射(XRD)和傅里叶变换红外光谱(FTIR)对复合材料进行了表征,证实了ZIF-8成功加载到丝瓜底物上。对ZIF-8@DLS对甲苯的吸附量进行了评价,在标准条件下吸附量最大可达145.3 mg/g,效率为72%。动力学研究表明,吸附过程主要遵循伪二级模型,表明化学吸附。吸附等温线数据更接近Freundlich模型,表明复合材料的非均质表面存在多层吸附机制。ZIF-8@DLS复合材料展示了高吸附性能,成本效益,易于合成和环境友好的良好协同作用,使其成为废水处理和吸附分离过程中实际应用的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integrating Zeolitic Imidazolate Framework-8 with DES-Treated Loofah Sponge for Enhanced Toluene Adsorption

Integrating Zeolitic Imidazolate Framework-8 with DES-Treated Loofah Sponge for Enhanced Toluene Adsorption
The pervasive presence of toluene in aquatic environments, primarily due to oil spills and industrial effluents, necessitates the development of effective and sustainable remediation strategies. This study introduces ZIF-8@DES-treated loofah sponge (ZIF-8@DLS), a novel adsorbent composite material, synthesized via an in situ process that integrates the high surface area of ZIF-8 with the natural loofah sponge. The composite was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR), confirming the successful loading of ZIF-8 onto the loofah substrate. The adsorption capacity of ZIF-8@DLS for toluene was evaluated, achieving a maximum of 145.3 mg/g with an efficiency of 72% under standard conditions. Kinetic studies revealed that the adsorption process predominantly followed a pseudo-second-order model, indicative of chemisorption. The adsorption isotherm data were found to align more closely with the Freundlich model, suggesting a multilayer adsorption mechanism on the composite’s heterogeneous surface. The ZIF-8@DLS composite demonstrates a promising synergy of high adsorption performance, cost-effectiveness, facile synthesis, and environmental benignity, positioning it as a candidate for practical applications in wastewater treatment and adsorptive separation processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信