通过n掺杂碳点调制内置电场在大电流密度下的鲁棒析氧

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-01-16 DOI:10.1002/smll.202410399
Huimin Yang, Jianguo Dong, Xuena Gao, Chunmei Ni, Zhao Li, Yuanyuan Liu, Jing Li, Xiaoyan He, Wenyi Tan, Ligang Feng, Lin Tian
{"title":"通过n掺杂碳点调制内置电场在大电流密度下的鲁棒析氧","authors":"Huimin Yang,&nbsp;Jianguo Dong,&nbsp;Xuena Gao,&nbsp;Chunmei Ni,&nbsp;Zhao Li,&nbsp;Yuanyuan Liu,&nbsp;Jing Li,&nbsp;Xiaoyan He,&nbsp;Wenyi Tan,&nbsp;Ligang Feng,&nbsp;Lin Tian","doi":"10.1002/smll.202410399","DOIUrl":null,"url":null,"abstract":"<p>Constructing a built-in electric field (BIEF) within heterostructures has emerged as a compelling strategy for advancing electrocatalytic oxygen evolution reaction (OER) performance. Herein, the p-n type nanosheet array heterojunction Ni<sub>2</sub>P-NCDs-Co(OH)<sub>2</sub>-NF are successfully prepared. The variation in interaction affinity between nitrogen within N-doped carbon dots (NCDs) and Ni/Co induces charge redistribution between Co and Ni in the Ni<sub>2</sub>P-NCDs-Co(OH)<sub>2</sub>-NF-3 heterostructure, thereby enhancing the intensity of the BIEF, facilitating electron transfer, and markedly improving OER activity. The optimized electrocatalyst, Ni<sub>2</sub>P-NCDs-Co(OH)<sub>2</sub>-NF-3, demonstrates a remarkably low overpotential of 389 mV at 500 mA cm<sup>−2</sup>, alongsides a small Tafel slope of 65 mV dec<sup>−1</sup>, expansive electrochemical active surface area (ECSA), low impedance, outstanding stability exceeding 425 h at 500 mA cm<sup>−2</sup>, and a Faradaic efficiency of up to 96%. In situ Raman spectroscopy and density functional theoretical (DFT) calculations elucidate the OER mechanism, revealing that the enhanced BIEF optimizes the adsorption energy of Co<sup>3+</sup> to OH<sup>−</sup> and weakened the desorption energy of oxygen during the reaction. The work ponieeringly employed the NCDs as a regulator of the BIEF, effectively tuning field intensity and achieving superior electrocatalytic OER performance under large current density, thus charting new pathways for the development of high-efficiency oxygen evolution electrocatalysts.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 13","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating Built-In Electric Field Via N-Doped Carbon Dots for Robust Oxygen Evolution at Large Current Density\",\"authors\":\"Huimin Yang,&nbsp;Jianguo Dong,&nbsp;Xuena Gao,&nbsp;Chunmei Ni,&nbsp;Zhao Li,&nbsp;Yuanyuan Liu,&nbsp;Jing Li,&nbsp;Xiaoyan He,&nbsp;Wenyi Tan,&nbsp;Ligang Feng,&nbsp;Lin Tian\",\"doi\":\"10.1002/smll.202410399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Constructing a built-in electric field (BIEF) within heterostructures has emerged as a compelling strategy for advancing electrocatalytic oxygen evolution reaction (OER) performance. Herein, the p-n type nanosheet array heterojunction Ni<sub>2</sub>P-NCDs-Co(OH)<sub>2</sub>-NF are successfully prepared. The variation in interaction affinity between nitrogen within N-doped carbon dots (NCDs) and Ni/Co induces charge redistribution between Co and Ni in the Ni<sub>2</sub>P-NCDs-Co(OH)<sub>2</sub>-NF-3 heterostructure, thereby enhancing the intensity of the BIEF, facilitating electron transfer, and markedly improving OER activity. The optimized electrocatalyst, Ni<sub>2</sub>P-NCDs-Co(OH)<sub>2</sub>-NF-3, demonstrates a remarkably low overpotential of 389 mV at 500 mA cm<sup>−2</sup>, alongsides a small Tafel slope of 65 mV dec<sup>−1</sup>, expansive electrochemical active surface area (ECSA), low impedance, outstanding stability exceeding 425 h at 500 mA cm<sup>−2</sup>, and a Faradaic efficiency of up to 96%. In situ Raman spectroscopy and density functional theoretical (DFT) calculations elucidate the OER mechanism, revealing that the enhanced BIEF optimizes the adsorption energy of Co<sup>3+</sup> to OH<sup>−</sup> and weakened the desorption energy of oxygen during the reaction. The work ponieeringly employed the NCDs as a regulator of the BIEF, effectively tuning field intensity and achieving superior electrocatalytic OER performance under large current density, thus charting new pathways for the development of high-efficiency oxygen evolution electrocatalysts.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 13\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202410399\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202410399","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在异质结构中构建内置电场(BIEF)已成为提高电催化析氧反应(OER)性能的一种引人注目的策略。本文成功制备了p-n型纳米片阵列异质结Ni2P-NCDs-Co(OH)2-NF。氮掺杂碳点(NCDs)内氮与Ni/Co之间相互作用亲合力的变化,诱导了Ni2P-NCDs-Co(OH)2-NF-3异质结构中Co和Ni之间的电荷再分配,从而增强了BIEF的强度,促进了电子转移,显著提高了OER活性。优化后的电催化剂Ni2P-NCDs-Co(OH)2- nf -3在500 mA cm - 2时的过电位为389 mV, Tafel斜率为65 mV / dec - 1,电化学活性表面积(ECSA)大,阻抗低,在500 mA cm - 2时稳定性超过425 h,法拉第效率高达96%。原位拉曼光谱和密度泛函理论(DFT)计算揭示了OER机理,表明增强的BIEF优化了Co3+对OH -的吸附能,减弱了反应过程中氧的脱附能。本研究将NCDs作为BIEF的调节器,有效地调节了电场强度,并在大电流密度下实现了优异的电催化OER性能,从而为开发高效析氧电催化剂开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modulating Built-In Electric Field Via N-Doped Carbon Dots for Robust Oxygen Evolution at Large Current Density

Modulating Built-In Electric Field Via N-Doped Carbon Dots for Robust Oxygen Evolution at Large Current Density

Modulating Built-In Electric Field Via N-Doped Carbon Dots for Robust Oxygen Evolution at Large Current Density

Constructing a built-in electric field (BIEF) within heterostructures has emerged as a compelling strategy for advancing electrocatalytic oxygen evolution reaction (OER) performance. Herein, the p-n type nanosheet array heterojunction Ni2P-NCDs-Co(OH)2-NF are successfully prepared. The variation in interaction affinity between nitrogen within N-doped carbon dots (NCDs) and Ni/Co induces charge redistribution between Co and Ni in the Ni2P-NCDs-Co(OH)2-NF-3 heterostructure, thereby enhancing the intensity of the BIEF, facilitating electron transfer, and markedly improving OER activity. The optimized electrocatalyst, Ni2P-NCDs-Co(OH)2-NF-3, demonstrates a remarkably low overpotential of 389 mV at 500 mA cm−2, alongsides a small Tafel slope of 65 mV dec−1, expansive electrochemical active surface area (ECSA), low impedance, outstanding stability exceeding 425 h at 500 mA cm−2, and a Faradaic efficiency of up to 96%. In situ Raman spectroscopy and density functional theoretical (DFT) calculations elucidate the OER mechanism, revealing that the enhanced BIEF optimizes the adsorption energy of Co3+ to OH and weakened the desorption energy of oxygen during the reaction. The work ponieeringly employed the NCDs as a regulator of the BIEF, effectively tuning field intensity and achieving superior electrocatalytic OER performance under large current density, thus charting new pathways for the development of high-efficiency oxygen evolution electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信