给予电子的Zr诱导抑制Ru的过度氧化和加速脱质子过程,实现高效和持久的水电解

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-01-16 DOI:10.1002/smll.202411117
Ming Yang, Xin Guan, Zhaoping Shi, Hongxiang Wu, Yuqing Cheng, Ziang Wang, Wei Liu, Fei Xiao, Minhua Shao, Meiling Xiao, Changpeng Liu, Wei Xing
{"title":"给予电子的Zr诱导抑制Ru的过度氧化和加速脱质子过程,实现高效和持久的水电解","authors":"Ming Yang, Xin Guan, Zhaoping Shi, Hongxiang Wu, Yuqing Cheng, Ziang Wang, Wei Liu, Fei Xiao, Minhua Shao, Meiling Xiao, Changpeng Liu, Wei Xing","doi":"10.1002/smll.202411117","DOIUrl":null,"url":null,"abstract":"The scarcity of cost-effective and durable iridium-free anode electrocatalysts for the oxygen evolution reaction (OER) poses a significant challenge to the widespread application of the proton exchange membrane water electrolyzer (PEMWE). To address the electrochemical oxidation and dissolution issues of Ru-based electrocatalysts, an electron-donating modification strategy is developed to stabilize WRuO<sub>x</sub> under harsh oxidative conditions. The optimized catalyst with a low Zirconium doping (Zr, 1 wt.%) enhances durability noticeably, with a 77% reduction in degradation rate in the durability test of 10 mA cm<sup>−2</sup> in 0.5 <span>m</span> H<sub>2</sub>SO<sub>4</sub>. When integrated into a homemade PEMWE device, the Zr-doped catalyst achieves excellent long-term stability, lasting up to 650 h at 100 mA cm⁻<sup>2</sup>. Additionally, the electronic modulation from the Zr modification leads to superior activity with a low overpotential of 208 mV at 10 mA cm<sup>−2</sup>. Theoretical calculation results further reveal that electron-donating Zr modification effectively suppresses Ru overoxidation and lattice oxygen participation, maintaining a robust structure during acidic OER. This modification also promotes deprotonation through stronger Brønsted acid sites, significantly improving both long-term stability and activity.","PeriodicalId":228,"journal":{"name":"Small","volume":"79 1","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electron-Donating Zr Induces Suppressed Ru Over-Oxidation and Accelerated Deprotonation Process Toward Efficient and Durable Water Electrolysis\",\"authors\":\"Ming Yang, Xin Guan, Zhaoping Shi, Hongxiang Wu, Yuqing Cheng, Ziang Wang, Wei Liu, Fei Xiao, Minhua Shao, Meiling Xiao, Changpeng Liu, Wei Xing\",\"doi\":\"10.1002/smll.202411117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scarcity of cost-effective and durable iridium-free anode electrocatalysts for the oxygen evolution reaction (OER) poses a significant challenge to the widespread application of the proton exchange membrane water electrolyzer (PEMWE). To address the electrochemical oxidation and dissolution issues of Ru-based electrocatalysts, an electron-donating modification strategy is developed to stabilize WRuO<sub>x</sub> under harsh oxidative conditions. The optimized catalyst with a low Zirconium doping (Zr, 1 wt.%) enhances durability noticeably, with a 77% reduction in degradation rate in the durability test of 10 mA cm<sup>−2</sup> in 0.5 <span>m</span> H<sub>2</sub>SO<sub>4</sub>. When integrated into a homemade PEMWE device, the Zr-doped catalyst achieves excellent long-term stability, lasting up to 650 h at 100 mA cm⁻<sup>2</sup>. Additionally, the electronic modulation from the Zr modification leads to superior activity with a low overpotential of 208 mV at 10 mA cm<sup>−2</sup>. Theoretical calculation results further reveal that electron-donating Zr modification effectively suppresses Ru overoxidation and lattice oxygen participation, maintaining a robust structure during acidic OER. This modification also promotes deprotonation through stronger Brønsted acid sites, significantly improving both long-term stability and activity.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202411117\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202411117","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

用于析氧反应(OER)的经济、耐用的无铱阳极电催化剂的缺乏,对质子交换膜水电解器(PEMWE)的广泛应用构成了重大挑战。为了解决ru基电催化剂的电化学氧化和溶解问题,开发了一种供电子修饰策略来稳定WRuOx在恶劣氧化条件下的稳定性。优化后的催化剂低锆掺杂(Zr, 1 wt.%)明显提高了耐久性,在0.5 m H2SO4中10 mA cm−2的耐久性测试中,降解率降低了77%。当集成到自制的PEMWE装置中时,zr掺杂催化剂具有优异的长期稳定性,在100 mA cm⁻2下可持续长达650小时。此外,Zr修饰的电子调制导致了优异的活性,在10 mA cm−2下过电位低至208 mV。理论计算结果进一步表明,给予电子的Zr改性有效地抑制了Ru的过氧化和晶格氧参与,在酸性OER中保持了坚固的结构。这种修饰还通过更强的Brønsted酸位点促进去质子化,显著提高了长期稳定性和活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electron-Donating Zr Induces Suppressed Ru Over-Oxidation and Accelerated Deprotonation Process Toward Efficient and Durable Water Electrolysis

Electron-Donating Zr Induces Suppressed Ru Over-Oxidation and Accelerated Deprotonation Process Toward Efficient and Durable Water Electrolysis
The scarcity of cost-effective and durable iridium-free anode electrocatalysts for the oxygen evolution reaction (OER) poses a significant challenge to the widespread application of the proton exchange membrane water electrolyzer (PEMWE). To address the electrochemical oxidation and dissolution issues of Ru-based electrocatalysts, an electron-donating modification strategy is developed to stabilize WRuOx under harsh oxidative conditions. The optimized catalyst with a low Zirconium doping (Zr, 1 wt.%) enhances durability noticeably, with a 77% reduction in degradation rate in the durability test of 10 mA cm−2 in 0.5 m H2SO4. When integrated into a homemade PEMWE device, the Zr-doped catalyst achieves excellent long-term stability, lasting up to 650 h at 100 mA cm⁻2. Additionally, the electronic modulation from the Zr modification leads to superior activity with a low overpotential of 208 mV at 10 mA cm−2. Theoretical calculation results further reveal that electron-donating Zr modification effectively suppresses Ru overoxidation and lattice oxygen participation, maintaining a robust structure during acidic OER. This modification also promotes deprotonation through stronger Brønsted acid sites, significantly improving both long-term stability and activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信