在追求低功耗,无成型,高稳定的纳米级电子学TiOx记忆电阻器的生长参数中冲浪

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-01-16 DOI:10.1002/smll.202408369
Dilruba Hasina, Aparajita Mandal, Sanjeev Kumar Srivastava, Anirban Mitra, Tapobrata Som
{"title":"在追求低功耗,无成型,高稳定的纳米级电子学TiOx记忆电阻器的生长参数中冲浪","authors":"Dilruba Hasina,&nbsp;Aparajita Mandal,&nbsp;Sanjeev Kumar Srivastava,&nbsp;Anirban Mitra,&nbsp;Tapobrata Som","doi":"10.1002/smll.202408369","DOIUrl":null,"url":null,"abstract":"<p>Understanding the resistive switching (RS) behavior of oxide-based memory devices at nanoscale is crucial for advancement of high-integration density in-memory computing platforms. This study explores a comprehensive growth parameter space to address the RS behavior of pulsed-laser-deposited substoichiometric TiO<sub>2</sub> (TiO<i><sub>x</sub></i>) thin films in search of tailored nanoscale memristors with low-power consumption and high stability. Conductive-atomic-force-microscopy-based measurements facilitate deciphering the switching behavior at nanoscale, providing a direct avenue to understand the microstructure–property relationships. The present investigation reveals that rutile TiO<i><sub>x</sub></i> in an optimal stoichiometric configuration exhibits superior RS attributes, enabling forming-free, low-power, and highly stable memory functionalities at nanoscale. By contrast, the expected formation of the Magnéli phase within a highly defective as-grown TiO<i><sub>x</sub></i> film hinders the occurrence of switching. Detailed analyses yield a comprehensive parametric phase diagram, providing valuable insights to predict the optimal growth parameters for fabricating on-demand TiO<i><sub>x</sub></i>-based switching devices. As bulk RS attributes do not always translate seamlessly to the nanoscale, present study leads the pathway to develop tailored memristors for nanoscale electronics promoting their integration into ultrahigh-density, low-energy-consuming advanced memory technologies across diverse disciplines including robotics, data storage, and sensing.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 7","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surfing the Growth Parameters in the Quest for Low-Power, Forming-Free, and Highly Stable TiOx Memristors for Nanoscale Electronics\",\"authors\":\"Dilruba Hasina,&nbsp;Aparajita Mandal,&nbsp;Sanjeev Kumar Srivastava,&nbsp;Anirban Mitra,&nbsp;Tapobrata Som\",\"doi\":\"10.1002/smll.202408369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Understanding the resistive switching (RS) behavior of oxide-based memory devices at nanoscale is crucial for advancement of high-integration density in-memory computing platforms. This study explores a comprehensive growth parameter space to address the RS behavior of pulsed-laser-deposited substoichiometric TiO<sub>2</sub> (TiO<i><sub>x</sub></i>) thin films in search of tailored nanoscale memristors with low-power consumption and high stability. Conductive-atomic-force-microscopy-based measurements facilitate deciphering the switching behavior at nanoscale, providing a direct avenue to understand the microstructure–property relationships. The present investigation reveals that rutile TiO<i><sub>x</sub></i> in an optimal stoichiometric configuration exhibits superior RS attributes, enabling forming-free, low-power, and highly stable memory functionalities at nanoscale. By contrast, the expected formation of the Magnéli phase within a highly defective as-grown TiO<i><sub>x</sub></i> film hinders the occurrence of switching. Detailed analyses yield a comprehensive parametric phase diagram, providing valuable insights to predict the optimal growth parameters for fabricating on-demand TiO<i><sub>x</sub></i>-based switching devices. As bulk RS attributes do not always translate seamlessly to the nanoscale, present study leads the pathway to develop tailored memristors for nanoscale electronics promoting their integration into ultrahigh-density, low-energy-consuming advanced memory technologies across diverse disciplines including robotics, data storage, and sensing.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 7\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202408369\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202408369","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解纳米级氧化物存储器件的电阻开关(RS)行为对于推动高集成度内存计算平台的发展至关重要。本研究探索了一个全面的生长参数空间,以解决脉冲激光沉积亚计量 TiO2(TiOx)薄膜的 RS 行为问题,从而寻找具有低功耗和高稳定性的定制纳米级忆阻器。基于传导原子力显微镜的测量有助于破译纳米尺度的开关行为,为了解微观结构与性能之间的关系提供了直接途径。本研究揭示了最佳化学计量配置的金红石型氧化钛具有卓越的 RS 特性,可在纳米尺度上实现免成型、低功耗和高度稳定的存储器功能。相比之下,在高度缺陷的钛氧化物薄膜中形成的马格尼里相阻碍了开关的发生。详细分析得出了全面的参数相图,为预测按需制造基于 TiOx 的开关器件的最佳生长参数提供了宝贵的见解。由于块状 RS 的属性并不总是能无缝转换到纳米尺度,本研究为开发纳米尺度电子器件的定制忆阻器开辟了道路,促进了它们与机器人、数据存储和传感等不同学科的超高密度、低能耗先进存储技术的集成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surfing the Growth Parameters in the Quest for Low-Power, Forming-Free, and Highly Stable TiOx Memristors for Nanoscale Electronics

Surfing the Growth Parameters in the Quest for Low-Power, Forming-Free, and Highly Stable TiOx Memristors for Nanoscale Electronics

Surfing the Growth Parameters in the Quest for Low-Power, Forming-Free, and Highly Stable TiOx Memristors for Nanoscale Electronics

Understanding the resistive switching (RS) behavior of oxide-based memory devices at nanoscale is crucial for advancement of high-integration density in-memory computing platforms. This study explores a comprehensive growth parameter space to address the RS behavior of pulsed-laser-deposited substoichiometric TiO2 (TiOx) thin films in search of tailored nanoscale memristors with low-power consumption and high stability. Conductive-atomic-force-microscopy-based measurements facilitate deciphering the switching behavior at nanoscale, providing a direct avenue to understand the microstructure–property relationships. The present investigation reveals that rutile TiOx in an optimal stoichiometric configuration exhibits superior RS attributes, enabling forming-free, low-power, and highly stable memory functionalities at nanoscale. By contrast, the expected formation of the Magnéli phase within a highly defective as-grown TiOx film hinders the occurrence of switching. Detailed analyses yield a comprehensive parametric phase diagram, providing valuable insights to predict the optimal growth parameters for fabricating on-demand TiOx-based switching devices. As bulk RS attributes do not always translate seamlessly to the nanoscale, present study leads the pathway to develop tailored memristors for nanoscale electronics promoting their integration into ultrahigh-density, low-energy-consuming advanced memory technologies across diverse disciplines including robotics, data storage, and sensing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信