Maria V. Efremova, Ulf Wiedwald, Felix Sigmund, Silviu-Vasile Bodea, Hendrik Ohldag, Thomas Feggeler, Ralf Meckenstock, Lorenz N. Panzl, Jeroen Francke, Irina Beer, Natalia P. Ivleva, Irina B. Alieva, Anastasiia S. Garanina, Alevtina S. Semkina, Franziska Curdt, Nicolas Josten, Sebastian Wintz, Michael Farle, Reinoud Lavrijsen, Maxim A. Abakumov, Michael Winklhofer, Gil G. Westmeyer
{"title":"磁性操纵哺乳动物细胞系的纳米囊室中遗传控制氧化铁生物矿化","authors":"Maria V. Efremova, Ulf Wiedwald, Felix Sigmund, Silviu-Vasile Bodea, Hendrik Ohldag, Thomas Feggeler, Ralf Meckenstock, Lorenz N. Panzl, Jeroen Francke, Irina Beer, Natalia P. Ivleva, Irina B. Alieva, Anastasiia S. Garanina, Alevtina S. Semkina, Franziska Curdt, Nicolas Josten, Sebastian Wintz, Michael Farle, Reinoud Lavrijsen, Maxim A. Abakumov, Michael Winklhofer, Gil G. Westmeyer","doi":"10.1002/adfm.202418013","DOIUrl":null,"url":null,"abstract":"<p>Magnetic nanoparticles have proven invaluable for biomechanical investigations due to their ability to exert localized forces. However, cellular delivery of exogenous magnetic agents often results in endosomal entrapment, thereby limiting their utility for manipulating subcellular structures. This study characterizes and exploits fully genetically controlled biomineralization of iron-oxide cores inside encapsulin nanocompartments to enable magnetic-activated cell sorting (MACS) and magnetic cell manipulation. The fraction of MACS-retained cells showed substantial overexpression of encapsulins and exhibited both para- and ferrimagnetic responses with magnetic moments of 10<sup>−15</sup> A m<sup>2</sup> per cell, comparable to standard exogenous labels for MACS. Electron microscopy revealed that MACS-retained cells contained densely packed agglomerates of ≈30 nm iron oxide cores consisting of ultrafine quasicrystalline ordered nuclei within an amorphous matrix of iron, oxygen, and phosphorus. Scanning transmission X-ray microscopy, X-ray absorption spectroscopy, and Raman microspectroscopy confirmed that the iron-oxide species are consistent with ferric oxide (Fe<sub>2</sub>O<sub>3</sub>). In addition, the encapsulin-overexpressing MACS-retained cells can be manipulated by a magnetic needle and regrown in patterns determined by magnetic gradients. This study demonstrates that the formation of quasicrystalline iron oxide with mixed para/ferrimagnetic behavior in the cytosol of mammalian cells enables magnetic manipulation without the delivery of exogenous agents.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 13","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202418013","citationCount":"0","resultStr":"{\"title\":\"Genetically Controlled Iron Oxide Biomineralization in Encapsulin Nanocompartments for Magnetic Manipulation of a Mammalian Cell Line\",\"authors\":\"Maria V. Efremova, Ulf Wiedwald, Felix Sigmund, Silviu-Vasile Bodea, Hendrik Ohldag, Thomas Feggeler, Ralf Meckenstock, Lorenz N. Panzl, Jeroen Francke, Irina Beer, Natalia P. Ivleva, Irina B. Alieva, Anastasiia S. Garanina, Alevtina S. Semkina, Franziska Curdt, Nicolas Josten, Sebastian Wintz, Michael Farle, Reinoud Lavrijsen, Maxim A. Abakumov, Michael Winklhofer, Gil G. Westmeyer\",\"doi\":\"10.1002/adfm.202418013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Magnetic nanoparticles have proven invaluable for biomechanical investigations due to their ability to exert localized forces. However, cellular delivery of exogenous magnetic agents often results in endosomal entrapment, thereby limiting their utility for manipulating subcellular structures. This study characterizes and exploits fully genetically controlled biomineralization of iron-oxide cores inside encapsulin nanocompartments to enable magnetic-activated cell sorting (MACS) and magnetic cell manipulation. The fraction of MACS-retained cells showed substantial overexpression of encapsulins and exhibited both para- and ferrimagnetic responses with magnetic moments of 10<sup>−15</sup> A m<sup>2</sup> per cell, comparable to standard exogenous labels for MACS. Electron microscopy revealed that MACS-retained cells contained densely packed agglomerates of ≈30 nm iron oxide cores consisting of ultrafine quasicrystalline ordered nuclei within an amorphous matrix of iron, oxygen, and phosphorus. Scanning transmission X-ray microscopy, X-ray absorption spectroscopy, and Raman microspectroscopy confirmed that the iron-oxide species are consistent with ferric oxide (Fe<sub>2</sub>O<sub>3</sub>). In addition, the encapsulin-overexpressing MACS-retained cells can be manipulated by a magnetic needle and regrown in patterns determined by magnetic gradients. This study demonstrates that the formation of quasicrystalline iron oxide with mixed para/ferrimagnetic behavior in the cytosol of mammalian cells enables magnetic manipulation without the delivery of exogenous agents.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"35 13\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adfm.202418013\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202418013\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202418013","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
磁性纳米颗粒由于其施加局部力的能力,在生物力学研究中被证明是无价的。然而,外源性磁性药物的细胞递送通常会导致内体包裹,从而限制了它们在操纵亚细胞结构方面的效用。本研究描述并利用了完全由基因控制的纳米隔间内的氧化铁核生物矿化,以实现磁激活细胞分选(MACS)和磁细胞操作。保留MACS的细胞部分显示出大量过表达的胶囊,并表现出每细胞磁矩为10−15 A m2的准磁性和亚铁磁性反应,与MACS的标准外源标记相当。电子显微镜显示,macs保留的细胞含有密集堆积的≈30 nm的氧化铁核团,由铁、氧和磷的无定形基质内的超细准晶有序核组成。扫描透射x射线显微镜、x射线吸收光谱和拉曼显微光谱证实了氧化铁的种类与氧化铁(Fe2O3)一致。此外,过表达囊化蛋白的macs保留细胞可以通过磁针操纵,并以磁梯度确定的模式再生。这项研究表明,在哺乳动物细胞的细胞质中形成具有混合对偶磁性/铁磁性行为的准晶体氧化铁,可以在不传递外源性药物的情况下进行磁性操作。
Genetically Controlled Iron Oxide Biomineralization in Encapsulin Nanocompartments for Magnetic Manipulation of a Mammalian Cell Line
Magnetic nanoparticles have proven invaluable for biomechanical investigations due to their ability to exert localized forces. However, cellular delivery of exogenous magnetic agents often results in endosomal entrapment, thereby limiting their utility for manipulating subcellular structures. This study characterizes and exploits fully genetically controlled biomineralization of iron-oxide cores inside encapsulin nanocompartments to enable magnetic-activated cell sorting (MACS) and magnetic cell manipulation. The fraction of MACS-retained cells showed substantial overexpression of encapsulins and exhibited both para- and ferrimagnetic responses with magnetic moments of 10−15 A m2 per cell, comparable to standard exogenous labels for MACS. Electron microscopy revealed that MACS-retained cells contained densely packed agglomerates of ≈30 nm iron oxide cores consisting of ultrafine quasicrystalline ordered nuclei within an amorphous matrix of iron, oxygen, and phosphorus. Scanning transmission X-ray microscopy, X-ray absorption spectroscopy, and Raman microspectroscopy confirmed that the iron-oxide species are consistent with ferric oxide (Fe2O3). In addition, the encapsulin-overexpressing MACS-retained cells can be manipulated by a magnetic needle and regrown in patterns determined by magnetic gradients. This study demonstrates that the formation of quasicrystalline iron oxide with mixed para/ferrimagnetic behavior in the cytosol of mammalian cells enables magnetic manipulation without the delivery of exogenous agents.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.