非定常不可压缩对流Brinkman-Forchheimer方程的鲁棒全局无发散弱Galerkin方法

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Xiaojuan Wang, Jihong Xiao, Xiaoping Xie, Shiquan Zhang
{"title":"非定常不可压缩对流Brinkman-Forchheimer方程的鲁棒全局无发散弱Galerkin方法","authors":"Xiaojuan Wang, Jihong Xiao, Xiaoping Xie, Shiquan Zhang","doi":"10.1016/j.cnsns.2024.108578","DOIUrl":null,"url":null,"abstract":"This paper develops and analyzes a class of semi-discrete and fully discrete weak Galerkin finite element methods for unsteady incompressible convective Brinkman–Forchheimer equations. For the spatial discretization, the methods adopt the piecewise polynomials of degrees <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mrow><mml:mi>m</mml:mi><mml:mspace width=\"1em\"></mml:mspace><mml:mrow><mml:mo>(</mml:mo><mml:mi>m</mml:mi><mml:mo>≥</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> and <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:mi>m</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> respectively to approximate the velocity and pressure inside the elements, and piecewise polynomials of degree <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:mi>m</mml:mi></mml:math> to approximate their numerical traces on the interfaces of elements. In the fully discrete method, the backward Euler difference scheme is used to approximate the time derivative. The methods are shown to yield globally divergence-free velocity approximation. Optimal a priori error estimates in the energy norm and <mml:math altimg=\"si4.svg\" display=\"inline\"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> norm are established. A convergent linearized iterative algorithm is designed for solving the fully discrete system. Numerical experiments are provided to verify the theoretical results.","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"54 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust globally divergence-free weak Galerkin methods for unsteady incompressible convective Brinkman–Forchheimer equations\",\"authors\":\"Xiaojuan Wang, Jihong Xiao, Xiaoping Xie, Shiquan Zhang\",\"doi\":\"10.1016/j.cnsns.2024.108578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops and analyzes a class of semi-discrete and fully discrete weak Galerkin finite element methods for unsteady incompressible convective Brinkman–Forchheimer equations. For the spatial discretization, the methods adopt the piecewise polynomials of degrees <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>m</mml:mi><mml:mspace width=\\\"1em\\\"></mml:mspace><mml:mrow><mml:mo>(</mml:mo><mml:mi>m</mml:mi><mml:mo>≥</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> and <mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mi>m</mml:mi><mml:mo linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> respectively to approximate the velocity and pressure inside the elements, and piecewise polynomials of degree <mml:math altimg=\\\"si3.svg\\\" display=\\\"inline\\\"><mml:mi>m</mml:mi></mml:math> to approximate their numerical traces on the interfaces of elements. In the fully discrete method, the backward Euler difference scheme is used to approximate the time derivative. The methods are shown to yield globally divergence-free velocity approximation. Optimal a priori error estimates in the energy norm and <mml:math altimg=\\\"si4.svg\\\" display=\\\"inline\\\"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> norm are established. A convergent linearized iterative algorithm is designed for solving the fully discrete system. Numerical experiments are provided to verify the theoretical results.\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cnsns.2024.108578\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.cnsns.2024.108578","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文开发并分析了一类针对非稳态不可压缩对流布林克曼-福克海默方程的半离散和全离散弱 Galerkin 有限元方法。在空间离散化方面,这些方法分别采用度数为 m(m≥1)和 m-1 的分片多项式来逼近元素内部的速度和压力,并采用度数为 m 的分片多项式来逼近元素界面上的数值迹线。在完全离散方法中,使用后向欧拉差分方案来近似时间导数。结果表明,这些方法可以得到全局无发散的速度近似值。建立了能量规范和 L2 规范的最佳先验误差估计。设计了一种收敛线性化迭代算法,用于求解完全离散系统。提供了数值实验来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust globally divergence-free weak Galerkin methods for unsteady incompressible convective Brinkman–Forchheimer equations
This paper develops and analyzes a class of semi-discrete and fully discrete weak Galerkin finite element methods for unsteady incompressible convective Brinkman–Forchheimer equations. For the spatial discretization, the methods adopt the piecewise polynomials of degrees m(m1) and m1 respectively to approximate the velocity and pressure inside the elements, and piecewise polynomials of degree m to approximate their numerical traces on the interfaces of elements. In the fully discrete method, the backward Euler difference scheme is used to approximate the time derivative. The methods are shown to yield globally divergence-free velocity approximation. Optimal a priori error estimates in the energy norm and L2 norm are established. A convergent linearized iterative algorithm is designed for solving the fully discrete system. Numerical experiments are provided to verify the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信