{"title":"基于分布式神经网络的未知高功率互联非线性系统FTC策略及其在cip中的应用","authors":"Jiyu Zhu, Qikun Shen","doi":"10.1016/j.cnsns.2025.108604","DOIUrl":null,"url":null,"abstract":"This article focuses on the distributed fault-tolerant control (FTC) problem for a class of interconnected nonlinear systems with unknown higher powers. In order to reduce the excessive resource consumption and address the denial-of-service (DoS) attacks, an event-triggered communication mechanism (ECM) with multiple DoS detectors is developed for interconnected nonlinear systems for the first time, especially unknown higher powers are included, instead of strictly equal to one as in the relevant results. Besides, unlike the previous works where only actuator faults are considered, the FTC strategy proposed in this article can handle communication component failures as well. Then, an adaptive neural controller is constructed by utilizing back-stepping technique and the tracking error of each subsystem is proven to converge to a small neighborhood of the origin even in the present of DoS attacks based on Lyapunov stability theory. Finally, the developed strategy is applied to a class of coupled inverted pendulum (CIP) systems and the simulation result demonstrates the validity.","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"2 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel distributed neural FTC strategy for interconnected nonlinear systems with unknown higher powers and its applications to CIPs\",\"authors\":\"Jiyu Zhu, Qikun Shen\",\"doi\":\"10.1016/j.cnsns.2025.108604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article focuses on the distributed fault-tolerant control (FTC) problem for a class of interconnected nonlinear systems with unknown higher powers. In order to reduce the excessive resource consumption and address the denial-of-service (DoS) attacks, an event-triggered communication mechanism (ECM) with multiple DoS detectors is developed for interconnected nonlinear systems for the first time, especially unknown higher powers are included, instead of strictly equal to one as in the relevant results. Besides, unlike the previous works where only actuator faults are considered, the FTC strategy proposed in this article can handle communication component failures as well. Then, an adaptive neural controller is constructed by utilizing back-stepping technique and the tracking error of each subsystem is proven to converge to a small neighborhood of the origin even in the present of DoS attacks based on Lyapunov stability theory. Finally, the developed strategy is applied to a class of coupled inverted pendulum (CIP) systems and the simulation result demonstrates the validity.\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cnsns.2025.108604\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.cnsns.2025.108604","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A novel distributed neural FTC strategy for interconnected nonlinear systems with unknown higher powers and its applications to CIPs
This article focuses on the distributed fault-tolerant control (FTC) problem for a class of interconnected nonlinear systems with unknown higher powers. In order to reduce the excessive resource consumption and address the denial-of-service (DoS) attacks, an event-triggered communication mechanism (ECM) with multiple DoS detectors is developed for interconnected nonlinear systems for the first time, especially unknown higher powers are included, instead of strictly equal to one as in the relevant results. Besides, unlike the previous works where only actuator faults are considered, the FTC strategy proposed in this article can handle communication component failures as well. Then, an adaptive neural controller is constructed by utilizing back-stepping technique and the tracking error of each subsystem is proven to converge to a small neighborhood of the origin even in the present of DoS attacks based on Lyapunov stability theory. Finally, the developed strategy is applied to a class of coupled inverted pendulum (CIP) systems and the simulation result demonstrates the validity.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.