基于分布式神经网络的未知高功率互联非线性系统FTC策略及其在cip中的应用

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Jiyu Zhu, Qikun Shen
{"title":"基于分布式神经网络的未知高功率互联非线性系统FTC策略及其在cip中的应用","authors":"Jiyu Zhu, Qikun Shen","doi":"10.1016/j.cnsns.2025.108604","DOIUrl":null,"url":null,"abstract":"This article focuses on the distributed fault-tolerant control (FTC) problem for a class of interconnected nonlinear systems with unknown higher powers. In order to reduce the excessive resource consumption and address the denial-of-service (DoS) attacks, an event-triggered communication mechanism (ECM) with multiple DoS detectors is developed for interconnected nonlinear systems for the first time, especially unknown higher powers are included, instead of strictly equal to one as in the relevant results. Besides, unlike the previous works where only actuator faults are considered, the FTC strategy proposed in this article can handle communication component failures as well. Then, an adaptive neural controller is constructed by utilizing back-stepping technique and the tracking error of each subsystem is proven to converge to a small neighborhood of the origin even in the present of DoS attacks based on Lyapunov stability theory. Finally, the developed strategy is applied to a class of coupled inverted pendulum (CIP) systems and the simulation result demonstrates the validity.","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"2 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel distributed neural FTC strategy for interconnected nonlinear systems with unknown higher powers and its applications to CIPs\",\"authors\":\"Jiyu Zhu, Qikun Shen\",\"doi\":\"10.1016/j.cnsns.2025.108604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article focuses on the distributed fault-tolerant control (FTC) problem for a class of interconnected nonlinear systems with unknown higher powers. In order to reduce the excessive resource consumption and address the denial-of-service (DoS) attacks, an event-triggered communication mechanism (ECM) with multiple DoS detectors is developed for interconnected nonlinear systems for the first time, especially unknown higher powers are included, instead of strictly equal to one as in the relevant results. Besides, unlike the previous works where only actuator faults are considered, the FTC strategy proposed in this article can handle communication component failures as well. Then, an adaptive neural controller is constructed by utilizing back-stepping technique and the tracking error of each subsystem is proven to converge to a small neighborhood of the origin even in the present of DoS attacks based on Lyapunov stability theory. Finally, the developed strategy is applied to a class of coupled inverted pendulum (CIP) systems and the simulation result demonstrates the validity.\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cnsns.2025.108604\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.cnsns.2025.108604","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类具有未知高功率的非线性互联系统的分布式容错控制问题。为了减少系统资源的过度消耗和解决DoS攻击问题,首次针对非线性互联系统提出了一种具有多个DoS检测器的事件触发通信机制(ECM),该机制不像以往的研究结果那样严格等于1,而是包含未知的更高功率。此外,与以往只考虑执行器故障的工作不同,本文提出的FTC策略也可以处理通信组件故障。然后,利用反演技术构造了自适应神经控制器,并基于Lyapunov稳定性理论证明了在DoS攻击下各子系统的跟踪误差收敛到原点的小邻域内。最后,将该策略应用于一类耦合倒立摆(CIP)系统,仿真结果验证了该策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel distributed neural FTC strategy for interconnected nonlinear systems with unknown higher powers and its applications to CIPs
This article focuses on the distributed fault-tolerant control (FTC) problem for a class of interconnected nonlinear systems with unknown higher powers. In order to reduce the excessive resource consumption and address the denial-of-service (DoS) attacks, an event-triggered communication mechanism (ECM) with multiple DoS detectors is developed for interconnected nonlinear systems for the first time, especially unknown higher powers are included, instead of strictly equal to one as in the relevant results. Besides, unlike the previous works where only actuator faults are considered, the FTC strategy proposed in this article can handle communication component failures as well. Then, an adaptive neural controller is constructed by utilizing back-stepping technique and the tracking error of each subsystem is proven to converge to a small neighborhood of the origin even in the present of DoS attacks based on Lyapunov stability theory. Finally, the developed strategy is applied to a class of coupled inverted pendulum (CIP) systems and the simulation result demonstrates the validity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信