Yunjin Yao , Yating Liu , Zhenshan Ma , Lijie Zhang , Jingyi Wang , Xueyi Song , Shaobin Wang
{"title":"多孔泡沫铁负载的锰铁作为高碘酸盐活化剂在污染物治理中的应用","authors":"Yunjin Yao , Yating Liu , Zhenshan Ma , Lijie Zhang , Jingyi Wang , Xueyi Song , Shaobin Wang","doi":"10.1016/j.ces.2025.121219","DOIUrl":null,"url":null,"abstract":"<div><div>The development of highly active porous catalysts is crucial for the efficient catalytic oxidation of organic pollutants. In this study, we synthesized a manganese–iron bimetallic catalyst supported on iron foam (MnFe-IF) using a dual chloride aqueous corrosion method to enhance potassium periodate (PI) activation. The unique morphology and synergistic effects of MnFe-IF led to exceptional activity and durability in degrading various organic pollutants, surpassing conventional non-precious metals and previously reported porous catalysts. Electrochemical evaluations, scavenging tests, and electron spin resonance analysis reveal that an electron transfer mechanism drives organic removal in the MnFe-IF/PI system. The catalyst activates PI, generating high-potential intermediates that significantly enhance pollutant degradation. Additionally, the transformation of Fe(II)/Fe(III) and Mn(II)/Mn(III)/Mn(IV) promotes the cooperative roles of singlet oxygen and superoxide radicals in organic elimination. This work provides new insights into the synthesis of effective porous catalysts for oxidizing organic contaminants.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"306 ","pages":"Article 121219"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manganese–iron supported on porous iron foam as efficient periodate activators toward pollutant abatement\",\"authors\":\"Yunjin Yao , Yating Liu , Zhenshan Ma , Lijie Zhang , Jingyi Wang , Xueyi Song , Shaobin Wang\",\"doi\":\"10.1016/j.ces.2025.121219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of highly active porous catalysts is crucial for the efficient catalytic oxidation of organic pollutants. In this study, we synthesized a manganese–iron bimetallic catalyst supported on iron foam (MnFe-IF) using a dual chloride aqueous corrosion method to enhance potassium periodate (PI) activation. The unique morphology and synergistic effects of MnFe-IF led to exceptional activity and durability in degrading various organic pollutants, surpassing conventional non-precious metals and previously reported porous catalysts. Electrochemical evaluations, scavenging tests, and electron spin resonance analysis reveal that an electron transfer mechanism drives organic removal in the MnFe-IF/PI system. The catalyst activates PI, generating high-potential intermediates that significantly enhance pollutant degradation. Additionally, the transformation of Fe(II)/Fe(III) and Mn(II)/Mn(III)/Mn(IV) promotes the cooperative roles of singlet oxygen and superoxide radicals in organic elimination. This work provides new insights into the synthesis of effective porous catalysts for oxidizing organic contaminants.</div></div>\",\"PeriodicalId\":271,\"journal\":{\"name\":\"Chemical Engineering Science\",\"volume\":\"306 \",\"pages\":\"Article 121219\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009250925000429\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250925000429","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Manganese–iron supported on porous iron foam as efficient periodate activators toward pollutant abatement
The development of highly active porous catalysts is crucial for the efficient catalytic oxidation of organic pollutants. In this study, we synthesized a manganese–iron bimetallic catalyst supported on iron foam (MnFe-IF) using a dual chloride aqueous corrosion method to enhance potassium periodate (PI) activation. The unique morphology and synergistic effects of MnFe-IF led to exceptional activity and durability in degrading various organic pollutants, surpassing conventional non-precious metals and previously reported porous catalysts. Electrochemical evaluations, scavenging tests, and electron spin resonance analysis reveal that an electron transfer mechanism drives organic removal in the MnFe-IF/PI system. The catalyst activates PI, generating high-potential intermediates that significantly enhance pollutant degradation. Additionally, the transformation of Fe(II)/Fe(III) and Mn(II)/Mn(III)/Mn(IV) promotes the cooperative roles of singlet oxygen and superoxide radicals in organic elimination. This work provides new insights into the synthesis of effective porous catalysts for oxidizing organic contaminants.
期刊介绍:
Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline.
Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.