Jacob Aunstrup Larsen, Abigail Barclay, Nicola Vettore, Louise K. Klausen, Lena N. Mangels, Alberto Coden, Jeremy D. Schmit, Kresten Lindorff-Larsen, Alexander K. Buell
{"title":"淀粉样蛋白原纤维生长的机制Φ-value分析","authors":"Jacob Aunstrup Larsen, Abigail Barclay, Nicola Vettore, Louise K. Klausen, Lena N. Mangels, Alberto Coden, Jeremy D. Schmit, Kresten Lindorff-Larsen, Alexander K. Buell","doi":"10.1038/s41557-024-01712-9","DOIUrl":null,"url":null,"abstract":"<p>Amyloid fibrils are highly stable misfolded protein assemblies that play an important role in several neurodegenerative and systemic diseases. Although structural information of the amyloid state is now abundant, mechanistic details about the misfolding process remain elusive. Inspired by the <i>Φ</i>-value analysis of protein folding, we combined experiments and molecular simulations to resolve amino-acid contacts and determine the structure of the transition-state ensemble—the rate-limiting step—for fibril elongation of PI3K-SH3 amyloid fibrils. The ensemble was validated experimentally by Tanford <i>β</i> analysis and computationally by free energy calculations. Although protein folding proceeds on funnel-shaped landscapes, here we find that the energy landscape for the misfolding reaction consists of a large ‘golf course’ region, defined by a single energy barrier and transition state, accessing a sharply funnelled region. Thus, misfolding occurs by rare, successful monomer–fibril end collisions interspersed by numerous unsuccessful binding attempts. Taken together, these insights provide a quantitative and highly resolved description of a protein misfolding reaction.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"30 1","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mechanism of amyloid fibril growth from Φ-value analysis\",\"authors\":\"Jacob Aunstrup Larsen, Abigail Barclay, Nicola Vettore, Louise K. Klausen, Lena N. Mangels, Alberto Coden, Jeremy D. Schmit, Kresten Lindorff-Larsen, Alexander K. Buell\",\"doi\":\"10.1038/s41557-024-01712-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Amyloid fibrils are highly stable misfolded protein assemblies that play an important role in several neurodegenerative and systemic diseases. Although structural information of the amyloid state is now abundant, mechanistic details about the misfolding process remain elusive. Inspired by the <i>Φ</i>-value analysis of protein folding, we combined experiments and molecular simulations to resolve amino-acid contacts and determine the structure of the transition-state ensemble—the rate-limiting step—for fibril elongation of PI3K-SH3 amyloid fibrils. The ensemble was validated experimentally by Tanford <i>β</i> analysis and computationally by free energy calculations. Although protein folding proceeds on funnel-shaped landscapes, here we find that the energy landscape for the misfolding reaction consists of a large ‘golf course’ region, defined by a single energy barrier and transition state, accessing a sharply funnelled region. Thus, misfolding occurs by rare, successful monomer–fibril end collisions interspersed by numerous unsuccessful binding attempts. Taken together, these insights provide a quantitative and highly resolved description of a protein misfolding reaction.</p><figure></figure>\",\"PeriodicalId\":18909,\"journal\":{\"name\":\"Nature chemistry\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":19.2000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s41557-024-01712-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-024-01712-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The mechanism of amyloid fibril growth from Φ-value analysis
Amyloid fibrils are highly stable misfolded protein assemblies that play an important role in several neurodegenerative and systemic diseases. Although structural information of the amyloid state is now abundant, mechanistic details about the misfolding process remain elusive. Inspired by the Φ-value analysis of protein folding, we combined experiments and molecular simulations to resolve amino-acid contacts and determine the structure of the transition-state ensemble—the rate-limiting step—for fibril elongation of PI3K-SH3 amyloid fibrils. The ensemble was validated experimentally by Tanford β analysis and computationally by free energy calculations. Although protein folding proceeds on funnel-shaped landscapes, here we find that the energy landscape for the misfolding reaction consists of a large ‘golf course’ region, defined by a single energy barrier and transition state, accessing a sharply funnelled region. Thus, misfolding occurs by rare, successful monomer–fibril end collisions interspersed by numerous unsuccessful binding attempts. Taken together, these insights provide a quantitative and highly resolved description of a protein misfolding reaction.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.