基于广义模糊双曲模型的输入约束随机系统自适应临界最优控制

IF 10.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Lulu Zhang;Huaguang Zhang;Jiayue Sun;Zhongyang Ming
{"title":"基于广义模糊双曲模型的输入约束随机系统自适应临界最优控制","authors":"Lulu Zhang;Huaguang Zhang;Jiayue Sun;Zhongyang Ming","doi":"10.1109/TFUZZ.2024.3523898","DOIUrl":null,"url":null,"abstract":"This article investigates adaptive dynamic programming (ADP)-based optimal control issue of nonlinear stochastic systems with asymmetric input constraints. The solution starts with developing generalized fuzzy hyperbolic model (GFHM) in the stochastic system, which aims to approximate unknown nonlinear terms. By establishing a nonquadratic cost function, the constrained <inline-formula><tex-math>$H_{\\infty }$</tex-math></inline-formula> control problem is converted into zero-sum game and Hamilton–Jacobi–Isaacs equation (HJIE) is derived. To solve the HJIE, the ADP algorithm is developed by constructing a single-network adaptive critic framework. Assisted by GFHM, the updating process obviates the necessity for the dynamics of unknown nonlinear terms. Under the designed controller, the stability of the stochastic system is guaranteed by the Lyapunov method. Two illustrative examples validate the presented method.","PeriodicalId":13212,"journal":{"name":"IEEE Transactions on Fuzzy Systems","volume":"33 5","pages":"1627-1638"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Critic-Based Optimal Control of Input-Constrained Stochastic Systems via Generalized Fuzzy Hyperbolic Models\",\"authors\":\"Lulu Zhang;Huaguang Zhang;Jiayue Sun;Zhongyang Ming\",\"doi\":\"10.1109/TFUZZ.2024.3523898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article investigates adaptive dynamic programming (ADP)-based optimal control issue of nonlinear stochastic systems with asymmetric input constraints. The solution starts with developing generalized fuzzy hyperbolic model (GFHM) in the stochastic system, which aims to approximate unknown nonlinear terms. By establishing a nonquadratic cost function, the constrained <inline-formula><tex-math>$H_{\\\\infty }$</tex-math></inline-formula> control problem is converted into zero-sum game and Hamilton–Jacobi–Isaacs equation (HJIE) is derived. To solve the HJIE, the ADP algorithm is developed by constructing a single-network adaptive critic framework. Assisted by GFHM, the updating process obviates the necessity for the dynamics of unknown nonlinear terms. Under the designed controller, the stability of the stochastic system is guaranteed by the Lyapunov method. Two illustrative examples validate the presented method.\",\"PeriodicalId\":13212,\"journal\":{\"name\":\"IEEE Transactions on Fuzzy Systems\",\"volume\":\"33 5\",\"pages\":\"1627-1638\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Fuzzy Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10842460/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10842460/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有非对称输入约束的非线性随机系统的自适应动态规划(ADP)最优控制问题。该方法首先在随机系统中建立广义模糊双曲模型(GFHM),目的是近似未知的非线性项。通过建立非二次代价函数,将约束$H_{\infty }$控制问题转化为零和博弈,推导出Hamilton-Jacobi-Isaacs方程(HJIE)。为了解决HJIE问题,通过构建单网络自适应批评框架,开发了ADP算法。在GFHM的辅助下,更新过程消除了对未知非线性项的动力学的需要。在所设计的控制器下,用李雅普诺夫方法保证了随机系统的稳定性。两个示例验证了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Critic-Based Optimal Control of Input-Constrained Stochastic Systems via Generalized Fuzzy Hyperbolic Models
This article investigates adaptive dynamic programming (ADP)-based optimal control issue of nonlinear stochastic systems with asymmetric input constraints. The solution starts with developing generalized fuzzy hyperbolic model (GFHM) in the stochastic system, which aims to approximate unknown nonlinear terms. By establishing a nonquadratic cost function, the constrained $H_{\infty }$ control problem is converted into zero-sum game and Hamilton–Jacobi–Isaacs equation (HJIE) is derived. To solve the HJIE, the ADP algorithm is developed by constructing a single-network adaptive critic framework. Assisted by GFHM, the updating process obviates the necessity for the dynamics of unknown nonlinear terms. Under the designed controller, the stability of the stochastic system is guaranteed by the Lyapunov method. Two illustrative examples validate the presented method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Fuzzy Systems
IEEE Transactions on Fuzzy Systems 工程技术-工程:电子与电气
CiteScore
20.50
自引率
13.40%
发文量
517
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Fuzzy Systems is a scholarly journal that focuses on the theory, design, and application of fuzzy systems. It aims to publish high-quality technical papers that contribute significant technical knowledge and exploratory developments in the field of fuzzy systems. The journal particularly emphasizes engineering systems and scientific applications. In addition to research articles, the Transactions also includes a letters section featuring current information, comments, and rebuttals related to published papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信