Dongjie Zhou, Jinguo Zhang, Chong Tan, Liyan Li, Qianli Qiu, Zongkun Zhang, Yan Sun, Lei Zhou, Ning Dai, Junhao Chu, Jiaming Hao
{"title":"半金属-介电-金属超表面在非大气透明窗口下的高性能消能红外伪装","authors":"Dongjie Zhou, Jinguo Zhang, Chong Tan, Liyan Li, Qianli Qiu, Zongkun Zhang, Yan Sun, Lei Zhou, Ning Dai, Junhao Chu, Jiaming Hao","doi":"10.1515/nanoph-2024-0538","DOIUrl":null,"url":null,"abstract":"The development of novel camouflage technologies is of great significance, exerting an impact on both fundamental science and diverse military and civilian applications. Effective camouflage aims to reduce the recognizability of an object, making it to effortlessly blend with the environment. For infrared camouflage, it necessitates precise control over surface emissivity and temperature to ensure that the target blends effectively with the surrounding infrared background. This study presents a semimetal–dielectric–metal metasurface emitter engineered for the application of infrared camouflage. The metasurface, with a total thickness of only 545 nm, consists of a Bi micro-disk array and a continuous ZnS and Ti film beneath it. Unlike conventional metal-based metasurface design, our approach leverages the unique optical properties of Bi, achieving an average emissivity of 0.91 in the 5–8 μm non-atmospheric transparency window. Experimental results indicate that the metasurface emitter achieves lower radiation and actual temperatures compared to those observed in comparative experiments, highlighting its superior energy dissipation and thermal stability. The metasurface offers advantages such as structural simplicity, cost-effectiveness, angular insensitivity, and deep-subwavelength features, rendering it suitable for a range of applications including military camouflage and anti-counterfeiting, with potential for broad deployment in infrared technologies.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"3 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semimetal–dielectric–metal metasurface for infrared camouflage with high-performance energy dissipation in non-atmospheric transparency window\",\"authors\":\"Dongjie Zhou, Jinguo Zhang, Chong Tan, Liyan Li, Qianli Qiu, Zongkun Zhang, Yan Sun, Lei Zhou, Ning Dai, Junhao Chu, Jiaming Hao\",\"doi\":\"10.1515/nanoph-2024-0538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of novel camouflage technologies is of great significance, exerting an impact on both fundamental science and diverse military and civilian applications. Effective camouflage aims to reduce the recognizability of an object, making it to effortlessly blend with the environment. For infrared camouflage, it necessitates precise control over surface emissivity and temperature to ensure that the target blends effectively with the surrounding infrared background. This study presents a semimetal–dielectric–metal metasurface emitter engineered for the application of infrared camouflage. The metasurface, with a total thickness of only 545 nm, consists of a Bi micro-disk array and a continuous ZnS and Ti film beneath it. Unlike conventional metal-based metasurface design, our approach leverages the unique optical properties of Bi, achieving an average emissivity of 0.91 in the 5–8 μm non-atmospheric transparency window. Experimental results indicate that the metasurface emitter achieves lower radiation and actual temperatures compared to those observed in comparative experiments, highlighting its superior energy dissipation and thermal stability. The metasurface offers advantages such as structural simplicity, cost-effectiveness, angular insensitivity, and deep-subwavelength features, rendering it suitable for a range of applications including military camouflage and anti-counterfeiting, with potential for broad deployment in infrared technologies.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2024-0538\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0538","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Semimetal–dielectric–metal metasurface for infrared camouflage with high-performance energy dissipation in non-atmospheric transparency window
The development of novel camouflage technologies is of great significance, exerting an impact on both fundamental science and diverse military and civilian applications. Effective camouflage aims to reduce the recognizability of an object, making it to effortlessly blend with the environment. For infrared camouflage, it necessitates precise control over surface emissivity and temperature to ensure that the target blends effectively with the surrounding infrared background. This study presents a semimetal–dielectric–metal metasurface emitter engineered for the application of infrared camouflage. The metasurface, with a total thickness of only 545 nm, consists of a Bi micro-disk array and a continuous ZnS and Ti film beneath it. Unlike conventional metal-based metasurface design, our approach leverages the unique optical properties of Bi, achieving an average emissivity of 0.91 in the 5–8 μm non-atmospheric transparency window. Experimental results indicate that the metasurface emitter achieves lower radiation and actual temperatures compared to those observed in comparative experiments, highlighting its superior energy dissipation and thermal stability. The metasurface offers advantages such as structural simplicity, cost-effectiveness, angular insensitivity, and deep-subwavelength features, rendering it suitable for a range of applications including military camouflage and anti-counterfeiting, with potential for broad deployment in infrared technologies.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.