二阶变系数椭圆型方程三二次元的超收敛性

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Jinghong Liu
{"title":"二阶变系数椭圆型方程三二次元的超收敛性","authors":"Jinghong Liu","doi":"10.1016/j.camwa.2025.01.001","DOIUrl":null,"url":null,"abstract":"This study focuses on superconvergence of the tensor-product quadratic finite element (so-called triquadratic finite element) in a regular family of rectangular partitions of the domain for the second-order elliptic equation with variable coefficients in three dimensions. In this paper, we first introduce a variable coefficients elliptic boundary value problem and its finite elements discretization, as well as some important functions such as the discrete Green's function and discrete derivative Green's function. Then, an interpolation operator of project type is given, by which we derive a interpolation fundamental estimate (so-called weak estimate) for general variable coefficients elliptic equations. Finally, combining the weak estimate and estimates for the discrete Green's function and discrete derivative Green's function, we get superconvergence estimates for derivatives and function values of the finite element approximation in the pointwise sense of the <mml:math altimg=\"si1.svg\"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mo>∞</mml:mo></mml:mrow></mml:msup></mml:math>-norm.","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"27 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superconvergence of triquadratic finite elements for the second-order elliptic equation with variable coefficients\",\"authors\":\"Jinghong Liu\",\"doi\":\"10.1016/j.camwa.2025.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on superconvergence of the tensor-product quadratic finite element (so-called triquadratic finite element) in a regular family of rectangular partitions of the domain for the second-order elliptic equation with variable coefficients in three dimensions. In this paper, we first introduce a variable coefficients elliptic boundary value problem and its finite elements discretization, as well as some important functions such as the discrete Green's function and discrete derivative Green's function. Then, an interpolation operator of project type is given, by which we derive a interpolation fundamental estimate (so-called weak estimate) for general variable coefficients elliptic equations. Finally, combining the weak estimate and estimates for the discrete Green's function and discrete derivative Green's function, we get superconvergence estimates for derivatives and function values of the finite element approximation in the pointwise sense of the <mml:math altimg=\\\"si1.svg\\\"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mo>∞</mml:mo></mml:mrow></mml:msup></mml:math>-norm.\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.camwa.2025.01.001\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.camwa.2025.01.001","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了三维变系数二阶椭圆方程的张量积二次元(所谓的三二次元)在正则矩形分区域上的超收敛性。本文首先介绍了一类变系数椭圆型边值问题及其有限元离散化,以及离散格林函数和离散导数格林函数等重要函数。然后,给出了一个项目型插值算子,并由此导出了一般变系数椭圆方程的插值基本估计(即弱估计)。最后,结合离散格林函数和离散导数格林函数的弱估计和估计,得到了L∞范数点向意义上有限元逼近的导数和函数值的超收敛估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superconvergence of triquadratic finite elements for the second-order elliptic equation with variable coefficients
This study focuses on superconvergence of the tensor-product quadratic finite element (so-called triquadratic finite element) in a regular family of rectangular partitions of the domain for the second-order elliptic equation with variable coefficients in three dimensions. In this paper, we first introduce a variable coefficients elliptic boundary value problem and its finite elements discretization, as well as some important functions such as the discrete Green's function and discrete derivative Green's function. Then, an interpolation operator of project type is given, by which we derive a interpolation fundamental estimate (so-called weak estimate) for general variable coefficients elliptic equations. Finally, combining the weak estimate and estimates for the discrete Green's function and discrete derivative Green's function, we get superconvergence estimates for derivatives and function values of the finite element approximation in the pointwise sense of the L-norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信