用电化学表征优化聚合物电解质:聚丙二酸戊酯与聚环氧乙烷

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jaeyong Lee, Zach J. Hoffman, Saheli Chakraborty, Vivaan Patel, Nitash P. Balsara
{"title":"用电化学表征优化聚合物电解质:聚丙二酸戊酯与聚环氧乙烷","authors":"Jaeyong Lee, Zach J. Hoffman, Saheli Chakraborty, Vivaan Patel, Nitash P. Balsara","doi":"10.1021/acsenergylett.4c03525","DOIUrl":null,"url":null,"abstract":"Ion transport in two polymer electrolytes, poly(ethylene oxide) (PEO) and poly(pentyl malonate) (PPM), mixed with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is studied in the vicinity of the limiting current. The experimental measurements are in quantitative agreement with theoretical predictions based on the concentrated solution theory. The properties of two electrolytes are compared using a new plot wherein the length-normalized limiting current, <i>i</i><sub>lim</sub><i>L</i>, is plotted as a function of the length-normalized potential drop, Φ<sub>lim</sub>/<i>L</i>, in symmetric cells with electrolyte thickness, <i>L</i>. We propose that electrolyte design should aim to obtain the largest values of <i>i</i><sub>lim</sub><i>L</i> and the smallest values of Φ<sub>lim</sub>/<i>L</i>. Using this criterion, PPM/LiTFSI is a better polymer electrolyte than PEO/LiTFSI. We hope that PPM/LiTFSI will serve as a benchmark for developing next-generation polymer electrolytes.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"127 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Optimization of Polymer Electrolytes by Electrochemical Characterization: Poly(pentyl malonate) versus Poly(ethylene oxide)\",\"authors\":\"Jaeyong Lee, Zach J. Hoffman, Saheli Chakraborty, Vivaan Patel, Nitash P. Balsara\",\"doi\":\"10.1021/acsenergylett.4c03525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ion transport in two polymer electrolytes, poly(ethylene oxide) (PEO) and poly(pentyl malonate) (PPM), mixed with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is studied in the vicinity of the limiting current. The experimental measurements are in quantitative agreement with theoretical predictions based on the concentrated solution theory. The properties of two electrolytes are compared using a new plot wherein the length-normalized limiting current, <i>i</i><sub>lim</sub><i>L</i>, is plotted as a function of the length-normalized potential drop, Φ<sub>lim</sub>/<i>L</i>, in symmetric cells with electrolyte thickness, <i>L</i>. We propose that electrolyte design should aim to obtain the largest values of <i>i</i><sub>lim</sub><i>L</i> and the smallest values of Φ<sub>lim</sub>/<i>L</i>. Using this criterion, PPM/LiTFSI is a better polymer electrolyte than PEO/LiTFSI. We hope that PPM/LiTFSI will serve as a benchmark for developing next-generation polymer electrolytes.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":\"127 1\",\"pages\":\"\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.4c03525\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c03525","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究了两种聚合物电解质聚环氧乙烷(PEO)和聚丙二酸戊酯(PPM)与二(三氟甲磺酰)亚胺锂(LiTFSI)混合时在极限电流附近的离子输运。实验结果与基于浓溶液理论的理论预测结果在定量上是一致的。用一个新的图来比较两种电解质的性质,其中长度归一化的极限电流ilimL被绘制为长度归一化电位降Φlim/L的函数,在具有电解质厚度L的对称电池中。我们提出电解质设计应以获得最大的ilimL和最小的Φlim/L为目标。根据这一标准,PPM/LiTFSI是比PEO/LiTFSI更好的聚合物电解质。我们希望PPM/LiTFSI将成为开发下一代聚合物电解质的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Toward Optimization of Polymer Electrolytes by Electrochemical Characterization: Poly(pentyl malonate) versus Poly(ethylene oxide)

Toward Optimization of Polymer Electrolytes by Electrochemical Characterization: Poly(pentyl malonate) versus Poly(ethylene oxide)
Ion transport in two polymer electrolytes, poly(ethylene oxide) (PEO) and poly(pentyl malonate) (PPM), mixed with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) is studied in the vicinity of the limiting current. The experimental measurements are in quantitative agreement with theoretical predictions based on the concentrated solution theory. The properties of two electrolytes are compared using a new plot wherein the length-normalized limiting current, ilimL, is plotted as a function of the length-normalized potential drop, Φlim/L, in symmetric cells with electrolyte thickness, L. We propose that electrolyte design should aim to obtain the largest values of ilimL and the smallest values of Φlim/L. Using this criterion, PPM/LiTFSI is a better polymer electrolyte than PEO/LiTFSI. We hope that PPM/LiTFSI will serve as a benchmark for developing next-generation polymer electrolytes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信