热稳健的生物聚合物分离器传递K+传输和界面化学的长寿钾金属电池

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-01-15 DOI:10.1021/acsnano.4c16664
Yuyuan Wang, Liang Xu, Xiaopeng Chen, Ziang Chen, Xinhua Li, Wenyi Guo, Tao Cheng, Yuyang Yi, Jingyu Sun
{"title":"热稳健的生物聚合物分离器传递K+传输和界面化学的长寿钾金属电池","authors":"Yuyuan Wang, Liang Xu, Xiaopeng Chen, Ziang Chen, Xinhua Li, Wenyi Guo, Tao Cheng, Yuyang Yi, Jingyu Sun","doi":"10.1021/acsnano.4c16664","DOIUrl":null,"url":null,"abstract":"Potassium metal batteries (KMBs) hold promise for stationary energy storage with certain cost and resource merits. Nevertheless, their practicability is greatly handicapped by dendrite-related anodes, and the target design of specialized separators to boost anode safety is in its nascent stage. Here, we develop a thermally robust biopolymeric separator customized via a solvent-exchange and amino-siloxane decoration strategy to render durable and safe KMBs. Through experimental investigation and theoretical computation, we reveal that the optimized porosity and surface functionalization could manage ion transport and interfacial chemistry, thereby enabling efficient K<sup>+</sup> diffusion and a favorable solid electrolyte interphase to achieve prolonged cycling stability (over 3000 h). The thus-assembled full cell retains 80% of its initial capacity after 400 cycles at 0.5 A g<sup>–1</sup>. The heat-proof property of the designed separator is further demonstrated. Our biopolymeric separator, affording multifunctional features, provides an appealing solution to circumvent instability and safety issues associated with potassium metal batteries.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"22 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Thermally Robust Biopolymeric Separator Conveys K+ Transport and Interfacial Chemistry for Longevous Potassium Metal Batteries\",\"authors\":\"Yuyuan Wang, Liang Xu, Xiaopeng Chen, Ziang Chen, Xinhua Li, Wenyi Guo, Tao Cheng, Yuyang Yi, Jingyu Sun\",\"doi\":\"10.1021/acsnano.4c16664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Potassium metal batteries (KMBs) hold promise for stationary energy storage with certain cost and resource merits. Nevertheless, their practicability is greatly handicapped by dendrite-related anodes, and the target design of specialized separators to boost anode safety is in its nascent stage. Here, we develop a thermally robust biopolymeric separator customized via a solvent-exchange and amino-siloxane decoration strategy to render durable and safe KMBs. Through experimental investigation and theoretical computation, we reveal that the optimized porosity and surface functionalization could manage ion transport and interfacial chemistry, thereby enabling efficient K<sup>+</sup> diffusion and a favorable solid electrolyte interphase to achieve prolonged cycling stability (over 3000 h). The thus-assembled full cell retains 80% of its initial capacity after 400 cycles at 0.5 A g<sup>–1</sup>. The heat-proof property of the designed separator is further demonstrated. Our biopolymeric separator, affording multifunctional features, provides an appealing solution to circumvent instability and safety issues associated with potassium metal batteries.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c16664\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c16664","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属钾电池具有一定的成本和资源优势,在固定式储能领域具有广阔的应用前景。然而,它们的实用性受到枝晶相关阳极的极大阻碍,而专门用于提高阳极安全性的分离器的目标设计尚处于初级阶段。在这里,我们通过溶剂交换和氨基硅氧烷装饰策略开发了一种热坚固的生物聚合物分离器,以提供耐用和安全的kmb。通过实验研究和理论计算,我们发现优化的孔隙率和表面功能化可以管理离子传输和界面化学,从而实现有效的K+扩散和有利的固体电解质界面相,从而实现长时间的循环稳定性(超过3000小时)。因此,在0.5 a g-1下循环400次后,组装的完整电池保持80%的初始容量。进一步验证了所设计分离器的耐热性能。我们的生物聚合物分离器具有多种功能,为避免与钾金属电池相关的不稳定性和安全性问题提供了一种有吸引力的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Thermally Robust Biopolymeric Separator Conveys K+ Transport and Interfacial Chemistry for Longevous Potassium Metal Batteries

A Thermally Robust Biopolymeric Separator Conveys K+ Transport and Interfacial Chemistry for Longevous Potassium Metal Batteries
Potassium metal batteries (KMBs) hold promise for stationary energy storage with certain cost and resource merits. Nevertheless, their practicability is greatly handicapped by dendrite-related anodes, and the target design of specialized separators to boost anode safety is in its nascent stage. Here, we develop a thermally robust biopolymeric separator customized via a solvent-exchange and amino-siloxane decoration strategy to render durable and safe KMBs. Through experimental investigation and theoretical computation, we reveal that the optimized porosity and surface functionalization could manage ion transport and interfacial chemistry, thereby enabling efficient K+ diffusion and a favorable solid electrolyte interphase to achieve prolonged cycling stability (over 3000 h). The thus-assembled full cell retains 80% of its initial capacity after 400 cycles at 0.5 A g–1. The heat-proof property of the designed separator is further demonstrated. Our biopolymeric separator, affording multifunctional features, provides an appealing solution to circumvent instability and safety issues associated with potassium metal batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信