Daria D. Blach, Dana B. Sulas-Kern, Bipeng Wang, Run Long, Qiushi Ma, Oleg V. Prezhdo, Jeffrey L. Blackburn, Libai Huang
{"title":"二硫化钼和碳纳米管异质结构中电子离域促进的远距离电荷输运","authors":"Daria D. Blach, Dana B. Sulas-Kern, Bipeng Wang, Run Long, Qiushi Ma, Oleg V. Prezhdo, Jeffrey L. Blackburn, Libai Huang","doi":"10.1021/acsnano.4c12858","DOIUrl":null,"url":null,"abstract":"Controlling charge transport at the interfaces of nanostructures is crucial for their successful use in optoelectronic and solar energy applications. Mixed-dimensional heterostructures based on single-walled carbon nanotubes (SWCNTs) and transition metal dichalcogenides (TMDCs) have demonstrated exceptionally long-lived charge-separated states. However, the factors that control the charge transport at these interfaces remain unclear. In this study, we directly image charge transport at the interfaces of single- and multilayered MoS<sub>2</sub> and (6,5) SWCNT heterostructures using transient absorption microscopy. We find that charge recombination becomes slower as the layer thickness of MoS<sub>2</sub> increases. This behavior can be explained by electron delocalization in multilayers and reduced orbital overlap with the SWCNTs, as suggested by nonadiabatic (NA) molecular dynamics (MD) simulations. Dipolar repulsion of interfacial excitons results in rapid density-dependent transport within the first 100 ps. Stronger repulsion and longer-range charge transport are observed in heterostructures with thicker MoS<sub>2</sub> layers, driven by electron delocalization and larger interfacial dipole moments. These findings are consistent with the results from NAMD simulations. Our results suggest that heterostructures with multilayer MoS<sub>2</sub> can facilitate long-lived charge separation and transport, which is promising for applications in photovoltaics and photocatalysis.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"3 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-Range Charge Transport Facilitated by Electron Delocalization in MoS2 and Carbon Nanotube Heterostructures\",\"authors\":\"Daria D. Blach, Dana B. Sulas-Kern, Bipeng Wang, Run Long, Qiushi Ma, Oleg V. Prezhdo, Jeffrey L. Blackburn, Libai Huang\",\"doi\":\"10.1021/acsnano.4c12858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlling charge transport at the interfaces of nanostructures is crucial for their successful use in optoelectronic and solar energy applications. Mixed-dimensional heterostructures based on single-walled carbon nanotubes (SWCNTs) and transition metal dichalcogenides (TMDCs) have demonstrated exceptionally long-lived charge-separated states. However, the factors that control the charge transport at these interfaces remain unclear. In this study, we directly image charge transport at the interfaces of single- and multilayered MoS<sub>2</sub> and (6,5) SWCNT heterostructures using transient absorption microscopy. We find that charge recombination becomes slower as the layer thickness of MoS<sub>2</sub> increases. This behavior can be explained by electron delocalization in multilayers and reduced orbital overlap with the SWCNTs, as suggested by nonadiabatic (NA) molecular dynamics (MD) simulations. Dipolar repulsion of interfacial excitons results in rapid density-dependent transport within the first 100 ps. Stronger repulsion and longer-range charge transport are observed in heterostructures with thicker MoS<sub>2</sub> layers, driven by electron delocalization and larger interfacial dipole moments. These findings are consistent with the results from NAMD simulations. Our results suggest that heterostructures with multilayer MoS<sub>2</sub> can facilitate long-lived charge separation and transport, which is promising for applications in photovoltaics and photocatalysis.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c12858\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12858","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Long-Range Charge Transport Facilitated by Electron Delocalization in MoS2 and Carbon Nanotube Heterostructures
Controlling charge transport at the interfaces of nanostructures is crucial for their successful use in optoelectronic and solar energy applications. Mixed-dimensional heterostructures based on single-walled carbon nanotubes (SWCNTs) and transition metal dichalcogenides (TMDCs) have demonstrated exceptionally long-lived charge-separated states. However, the factors that control the charge transport at these interfaces remain unclear. In this study, we directly image charge transport at the interfaces of single- and multilayered MoS2 and (6,5) SWCNT heterostructures using transient absorption microscopy. We find that charge recombination becomes slower as the layer thickness of MoS2 increases. This behavior can be explained by electron delocalization in multilayers and reduced orbital overlap with the SWCNTs, as suggested by nonadiabatic (NA) molecular dynamics (MD) simulations. Dipolar repulsion of interfacial excitons results in rapid density-dependent transport within the first 100 ps. Stronger repulsion and longer-range charge transport are observed in heterostructures with thicker MoS2 layers, driven by electron delocalization and larger interfacial dipole moments. These findings are consistent with the results from NAMD simulations. Our results suggest that heterostructures with multilayer MoS2 can facilitate long-lived charge separation and transport, which is promising for applications in photovoltaics and photocatalysis.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.