Gaili Cao, Weinan Zhao, Lian Han, Youchao Teng, Shikuan Xu, Han Nguyen, Kam Chiu Tam
{"title":"表面活性剂/纤维素纳米晶配合物增强液滴在疏水植物表面的扩散","authors":"Gaili Cao, Weinan Zhao, Lian Han, Youchao Teng, Shikuan Xu, Han Nguyen, Kam Chiu Tam","doi":"10.1021/acsnano.4c13542","DOIUrl":null,"url":null,"abstract":"A surfactant is an efficient and common additive used to enhance the spreading of droplets on hydrophobic surfaces. However, a high surfactant concentration is required to achieve the desired performance, resulting in environmental pollution and increased costs. Additionally, the pesticide loading capacity of surfactants at low concentrations (below their critical micelle concentrations) is a concern. Thus, in this study, we developed a strategy to enhance pesticide loading and droplet deposition by mixing small amounts of sodium dodecyl sulfate (SDS) (0.1 wt %) and cationically modified cellulose nanocrystals (PCNC). The reduced surface tension, increased viscosity and adhesion, and electrostatic and hydrogen interactions resulted in a low retraction velocity, excellent spreading, and resistance to air turbulence. The improved loading content was facilitated by the hydrophobic domains of PCNC and SDS micelles.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"28 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Droplet Spreading on a Hydrophobic Plant Surface by Surfactant/Cellulose Nanocrystal Complexes\",\"authors\":\"Gaili Cao, Weinan Zhao, Lian Han, Youchao Teng, Shikuan Xu, Han Nguyen, Kam Chiu Tam\",\"doi\":\"10.1021/acsnano.4c13542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A surfactant is an efficient and common additive used to enhance the spreading of droplets on hydrophobic surfaces. However, a high surfactant concentration is required to achieve the desired performance, resulting in environmental pollution and increased costs. Additionally, the pesticide loading capacity of surfactants at low concentrations (below their critical micelle concentrations) is a concern. Thus, in this study, we developed a strategy to enhance pesticide loading and droplet deposition by mixing small amounts of sodium dodecyl sulfate (SDS) (0.1 wt %) and cationically modified cellulose nanocrystals (PCNC). The reduced surface tension, increased viscosity and adhesion, and electrostatic and hydrogen interactions resulted in a low retraction velocity, excellent spreading, and resistance to air turbulence. The improved loading content was facilitated by the hydrophobic domains of PCNC and SDS micelles.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c13542\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c13542","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing Droplet Spreading on a Hydrophobic Plant Surface by Surfactant/Cellulose Nanocrystal Complexes
A surfactant is an efficient and common additive used to enhance the spreading of droplets on hydrophobic surfaces. However, a high surfactant concentration is required to achieve the desired performance, resulting in environmental pollution and increased costs. Additionally, the pesticide loading capacity of surfactants at low concentrations (below their critical micelle concentrations) is a concern. Thus, in this study, we developed a strategy to enhance pesticide loading and droplet deposition by mixing small amounts of sodium dodecyl sulfate (SDS) (0.1 wt %) and cationically modified cellulose nanocrystals (PCNC). The reduced surface tension, increased viscosity and adhesion, and electrostatic and hydrogen interactions resulted in a low retraction velocity, excellent spreading, and resistance to air turbulence. The improved loading content was facilitated by the hydrophobic domains of PCNC and SDS micelles.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.