Xianjie Wang, Chang Hu, Lingli Zhang, Qiang Fu, Lingling Tao, Pengbo Zhang, Yu Sui, Bo Song
{"title":"基于PrNiO3/ nb掺杂SrTiO3 p-n结的自供电紫外位置敏感探测器","authors":"Xianjie Wang, Chang Hu, Lingli Zhang, Qiang Fu, Lingling Tao, Pengbo Zhang, Yu Sui, Bo Song","doi":"10.1063/5.0244086","DOIUrl":null,"url":null,"abstract":"Position-sensitive detectors based on the lateral photovoltaic effect have been widely used in optical engineering for the measurement of position, distance, and angles. However, self-powered ultraviolet position-sensitive detectors with high sensitivity and fast response are still lacking due to the difficulty associated with the fabrication of p-type wide bandgap semiconductors, which hinders their further design and enhancement. Here, the influence of band structures and interfacial transport properties on the performance of self-powered ultraviolet position-sensitive detectors based on PrNiO3/Nb:SrTiO3p–n junctions is systematically investigated. Large position sensitivity and fast relaxation time of the lateral photovoltaic effect were observed up to 400 K in the perovskite-based ultraviolet position-sensitive detectors. Hall effect measurements revealed that the transport of photoexcited carriers occurs mainly through the interface of the PrNiO3/Nb:SrTiO3 junctions, resulting in a fast response and a stable photovoltaic effect. This study presents insights and avenues for designing self-powered perovskite oxide ultraviolet position-sensitive detectors with enhanced photoelectric performance.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"4 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-powered ultraviolet position-sensitive detectors based on PrNiO3/Nb-doped SrTiO3 p–n junctions\",\"authors\":\"Xianjie Wang, Chang Hu, Lingli Zhang, Qiang Fu, Lingling Tao, Pengbo Zhang, Yu Sui, Bo Song\",\"doi\":\"10.1063/5.0244086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Position-sensitive detectors based on the lateral photovoltaic effect have been widely used in optical engineering for the measurement of position, distance, and angles. However, self-powered ultraviolet position-sensitive detectors with high sensitivity and fast response are still lacking due to the difficulty associated with the fabrication of p-type wide bandgap semiconductors, which hinders their further design and enhancement. Here, the influence of band structures and interfacial transport properties on the performance of self-powered ultraviolet position-sensitive detectors based on PrNiO3/Nb:SrTiO3p–n junctions is systematically investigated. Large position sensitivity and fast relaxation time of the lateral photovoltaic effect were observed up to 400 K in the perovskite-based ultraviolet position-sensitive detectors. Hall effect measurements revealed that the transport of photoexcited carriers occurs mainly through the interface of the PrNiO3/Nb:SrTiO3 junctions, resulting in a fast response and a stable photovoltaic effect. This study presents insights and avenues for designing self-powered perovskite oxide ultraviolet position-sensitive detectors with enhanced photoelectric performance.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0244086\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0244086","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Self-powered ultraviolet position-sensitive detectors based on PrNiO3/Nb-doped SrTiO3 p–n junctions
Position-sensitive detectors based on the lateral photovoltaic effect have been widely used in optical engineering for the measurement of position, distance, and angles. However, self-powered ultraviolet position-sensitive detectors with high sensitivity and fast response are still lacking due to the difficulty associated with the fabrication of p-type wide bandgap semiconductors, which hinders their further design and enhancement. Here, the influence of band structures and interfacial transport properties on the performance of self-powered ultraviolet position-sensitive detectors based on PrNiO3/Nb:SrTiO3p–n junctions is systematically investigated. Large position sensitivity and fast relaxation time of the lateral photovoltaic effect were observed up to 400 K in the perovskite-based ultraviolet position-sensitive detectors. Hall effect measurements revealed that the transport of photoexcited carriers occurs mainly through the interface of the PrNiO3/Nb:SrTiO3 junctions, resulting in a fast response and a stable photovoltaic effect. This study presents insights and avenues for designing self-powered perovskite oxide ultraviolet position-sensitive detectors with enhanced photoelectric performance.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.