从非额叶皮层区域解码语音意图

Prashanth Ravi Prakash, Tianhao Lei, Robert D Flint, Jason K Hsieh, Zachary Fitzgerald, Emily Mugler, Jessica Templer, Matthew A Goldrick, Matthew C Tate, Joshua Rosenow, Joshua Glaser, Marc W Slutzky
{"title":"从非额叶皮层区域解码语音意图","authors":"Prashanth Ravi Prakash, Tianhao Lei, Robert D Flint, Jason K Hsieh, Zachary Fitzgerald, Emily Mugler, Jessica Templer, Matthew A Goldrick, Matthew C Tate, Joshua Rosenow, Joshua Glaser, Marc W Slutzky","doi":"10.1088/1741-2552/adaa20","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Brain machine interfaces (BMIs) that can restore speech have predominantly focused on decoding speech signals from the speech motor cortices. A few studies have shown some information outside the speech motor cortices, such as in parietal and temporal lobes, that also may be useful for BMIs. The ability to use information from outside the frontal lobe could be useful not only for people with locked-in syndrome, but also to people with frontal lobe damage, which can cause nonfluent aphasia or apraxia of speech. However, temporal and parietal lobes are predominantly involved in perceptive speech processing and comprehension. Therefore, to be able to use signals from these areas in a speech BMI, it is important to ascertain that they are related to production. Here, using intracranial recordings, we sought evidence for whether, when and where neural information related to speech intent could be found in the temporal and parietal cortices<i>Approach</i>. Using intracranial recordings, we examined neural activity across temporal and parietal cortices to identify signals associated with speech intent. We employed causal information to distinguish speech intent from resting states and other language-related processes, such as comprehension and working memory. Neural signals were analyzed for their spatial distribution and temporal dynamics to determine their relevance to speech production.<i>Main results</i>. Causal information enabled us to distinguish speech intent from resting state and other processes involved in language processing or working memory. Information related to speech intent was distributed widely across the temporal and parietal lobes, including superior temporal, medial temporal, angular, and supramarginal gyri.<i>Significance</i>. Loss of communication due to neurological diseases can be devastating. While speech BMIs have made strides in decoding speech from frontal lobe signals, our study reveals that the temporal and parietal cortices contain information about speech production intent that can be causally decoded prior to the onset of voice. This information is distributed across a large network. This information can be used to improve current speech BMIs and potentially expand the patient population for speech BMIs to include people with frontal lobe damage from stroke or traumatic brain injury.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822885/pdf/","citationCount":"0","resultStr":"{\"title\":\"Decoding speech intent from non-frontal cortical areas.\",\"authors\":\"Prashanth Ravi Prakash, Tianhao Lei, Robert D Flint, Jason K Hsieh, Zachary Fitzgerald, Emily Mugler, Jessica Templer, Matthew A Goldrick, Matthew C Tate, Joshua Rosenow, Joshua Glaser, Marc W Slutzky\",\"doi\":\"10.1088/1741-2552/adaa20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. Brain machine interfaces (BMIs) that can restore speech have predominantly focused on decoding speech signals from the speech motor cortices. A few studies have shown some information outside the speech motor cortices, such as in parietal and temporal lobes, that also may be useful for BMIs. The ability to use information from outside the frontal lobe could be useful not only for people with locked-in syndrome, but also to people with frontal lobe damage, which can cause nonfluent aphasia or apraxia of speech. However, temporal and parietal lobes are predominantly involved in perceptive speech processing and comprehension. Therefore, to be able to use signals from these areas in a speech BMI, it is important to ascertain that they are related to production. Here, using intracranial recordings, we sought evidence for whether, when and where neural information related to speech intent could be found in the temporal and parietal cortices<i>Approach</i>. Using intracranial recordings, we examined neural activity across temporal and parietal cortices to identify signals associated with speech intent. We employed causal information to distinguish speech intent from resting states and other language-related processes, such as comprehension and working memory. Neural signals were analyzed for their spatial distribution and temporal dynamics to determine their relevance to speech production.<i>Main results</i>. Causal information enabled us to distinguish speech intent from resting state and other processes involved in language processing or working memory. Information related to speech intent was distributed widely across the temporal and parietal lobes, including superior temporal, medial temporal, angular, and supramarginal gyri.<i>Significance</i>. Loss of communication due to neurological diseases can be devastating. While speech BMIs have made strides in decoding speech from frontal lobe signals, our study reveals that the temporal and parietal cortices contain information about speech production intent that can be causally decoded prior to the onset of voice. This information is distributed across a large network. This information can be used to improve current speech BMIs and potentially expand the patient population for speech BMIs to include people with frontal lobe damage from stroke or traumatic brain injury.</p>\",\"PeriodicalId\":94096,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11822885/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/adaa20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adaa20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑机接口(bmi)在解码来自语言运动皮层的语音信号方面取得了很大进展。这些bmi主要针对的是具有完整语言运动皮质,但由于脑干中风或运动神经元疾病(如肌萎缩性侧索硬化症)导致额叶皮质和关节之间的连接中断而瘫痪的个体。一些研究表明,语言运动皮层之外的一些信息,如顶叶和颞叶,也可能对bmi有用。使用来自额叶外的信息的能力不仅对闭锁综合症患者有用,而且对额叶受损的人也有用,额叶受损会导致不流利的失语或语言失用。然而,颞叶和顶叶主要参与感知语音处理和理解。因此,为了能够在语音BMI中使用来自这些区域的信号,确定它们与生产相关是很重要的。在这里,我们使用颅内记录来寻找证据,以证明在颞叶和顶叶皮层中是否、何时、何地可以发现与言语意图相关的神经信息。因果信息使我们能够区分言语意图与静息状态以及涉及语言加工或工作记忆的其他过程。言语意图相关的信息广泛分布于颞叶和顶叶,包括颞上回、内侧回、角回和边缘上回。这为这些地区可解码的生产相关信号提供了证据。这一发现可能有助于设计语言脑机接口,从而使患有闭锁综合症、失语症或语言失用症的人受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoding speech intent from non-frontal cortical areas.

Objective. Brain machine interfaces (BMIs) that can restore speech have predominantly focused on decoding speech signals from the speech motor cortices. A few studies have shown some information outside the speech motor cortices, such as in parietal and temporal lobes, that also may be useful for BMIs. The ability to use information from outside the frontal lobe could be useful not only for people with locked-in syndrome, but also to people with frontal lobe damage, which can cause nonfluent aphasia or apraxia of speech. However, temporal and parietal lobes are predominantly involved in perceptive speech processing and comprehension. Therefore, to be able to use signals from these areas in a speech BMI, it is important to ascertain that they are related to production. Here, using intracranial recordings, we sought evidence for whether, when and where neural information related to speech intent could be found in the temporal and parietal corticesApproach. Using intracranial recordings, we examined neural activity across temporal and parietal cortices to identify signals associated with speech intent. We employed causal information to distinguish speech intent from resting states and other language-related processes, such as comprehension and working memory. Neural signals were analyzed for their spatial distribution and temporal dynamics to determine their relevance to speech production.Main results. Causal information enabled us to distinguish speech intent from resting state and other processes involved in language processing or working memory. Information related to speech intent was distributed widely across the temporal and parietal lobes, including superior temporal, medial temporal, angular, and supramarginal gyri.Significance. Loss of communication due to neurological diseases can be devastating. While speech BMIs have made strides in decoding speech from frontal lobe signals, our study reveals that the temporal and parietal cortices contain information about speech production intent that can be causally decoded prior to the onset of voice. This information is distributed across a large network. This information can be used to improve current speech BMIs and potentially expand the patient population for speech BMIs to include people with frontal lobe damage from stroke or traumatic brain injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信