动态x射线微断层扫描与激光多普勒振动测量:比较研究。

IF 2.4 3区 医学 Q3 NEUROSCIENCES
Aleksandra Ivanovic, Jeffrey Tao Cheng, Margaux Schmeltz, Wilhelm Wimmer, Christian M Schlepuetz, Aaron K Remenschneider, Anne Bonnin, Lukas Anschuetz
{"title":"动态x射线微断层扫描与激光多普勒振动测量:比较研究。","authors":"Aleksandra Ivanovic, Jeffrey Tao Cheng, Margaux Schmeltz, Wilhelm Wimmer, Christian M Schlepuetz, Aaron K Remenschneider, Anne Bonnin, Lukas Anschuetz","doi":"10.1007/s10162-024-00971-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>There are challenges in understanding the biomechanics of the human middle ear, and established methods for studying this system show significant limitations. In this study, we evaluate a novel dynamic imaging technique based on synchrotron X-ray microtomography designed to assess the biomechanical properties of the human middle ear by comparing it to laser-Doppler vibrometry (LDV).</p><p><strong>Methods: </strong>We examined three fresh-frozen temporal bones (TB), two donated by white males and one by a Black female, using dynamic synchrotron-based X-ray microtomography for 256 and 512 Hz, stimulated at 110 dB and 120 dB sound pressure level (SPL). In addition, we performed measurements on these TBs using 1D LDV, a well-established method.</p><p><strong>Results: </strong>The normalized displacement values (µm/Pa) at the umbo and the posterior crus of the stapes are consistent or within 5-10 dB differences between all LDV and dynamic microtomography measurements and previously reported literature references. In general, the overall behavior is similar between the two measurement techniques.</p><p><strong>Conclusion: </strong>In conclusion, our results demonstrate the suitability of dynamic synchrotron-based X-ray microtomography in studying the middle ear's biomechanics. However, this study shows that better standardization regarding acoustic stimulation and measurement points is needed to better compare the two measurement techniques.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"63-75"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic X-ray Microtomography vs. Laser-Doppler Vibrometry: A Comparative Study.\",\"authors\":\"Aleksandra Ivanovic, Jeffrey Tao Cheng, Margaux Schmeltz, Wilhelm Wimmer, Christian M Schlepuetz, Aaron K Remenschneider, Anne Bonnin, Lukas Anschuetz\",\"doi\":\"10.1007/s10162-024-00971-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>There are challenges in understanding the biomechanics of the human middle ear, and established methods for studying this system show significant limitations. In this study, we evaluate a novel dynamic imaging technique based on synchrotron X-ray microtomography designed to assess the biomechanical properties of the human middle ear by comparing it to laser-Doppler vibrometry (LDV).</p><p><strong>Methods: </strong>We examined three fresh-frozen temporal bones (TB), two donated by white males and one by a Black female, using dynamic synchrotron-based X-ray microtomography for 256 and 512 Hz, stimulated at 110 dB and 120 dB sound pressure level (SPL). In addition, we performed measurements on these TBs using 1D LDV, a well-established method.</p><p><strong>Results: </strong>The normalized displacement values (µm/Pa) at the umbo and the posterior crus of the stapes are consistent or within 5-10 dB differences between all LDV and dynamic microtomography measurements and previously reported literature references. In general, the overall behavior is similar between the two measurement techniques.</p><p><strong>Conclusion: </strong>In conclusion, our results demonstrate the suitability of dynamic synchrotron-based X-ray microtomography in studying the middle ear's biomechanics. However, this study shows that better standardization regarding acoustic stimulation and measurement points is needed to better compare the two measurement techniques.</p>\",\"PeriodicalId\":56283,\"journal\":{\"name\":\"Jaro-Journal of the Association for Research in Otolaryngology\",\"volume\":\" \",\"pages\":\"63-75\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jaro-Journal of the Association for Research in Otolaryngology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10162-024-00971-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jaro-Journal of the Association for Research in Otolaryngology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10162-024-00971-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目的:在理解人类中耳的生物力学方面存在挑战,并且研究该系统的现有方法显示出显着的局限性。在这项研究中,我们评估了一种基于同步加速器x射线微断层扫描的新型动态成像技术,该技术旨在通过将其与激光多普勒振动仪(LDV)进行比较来评估人类中耳的生物力学特性。方法:采用基于动态同步加速器的x射线微断层扫描技术,在110 dB和120 dB声压级(SPL)下,对3块新鲜冷冻的颞骨(TB)进行检测,其中2块由白人男性捐赠,1块由黑人女性捐赠。此外,我们使用1D LDV对这些tb进行了测量,这是一种成熟的方法。结果:所有LDV和动态微断层扫描测量值与先前报道的文献文献之间的归一化位移值(µm/Pa)一致或在5-10 dB内。一般来说,这两种测量技术之间的总体行为是相似的。结论:我们的研究结果证明了基于动态同步加速器的x射线微断层扫描在研究中耳生物力学方面的适用性。然而,本研究表明,为了更好地比较两种测量技术,需要对声刺激和测量点进行更好的标准化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic X-ray Microtomography vs. Laser-Doppler Vibrometry: A Comparative Study.

Purpose: There are challenges in understanding the biomechanics of the human middle ear, and established methods for studying this system show significant limitations. In this study, we evaluate a novel dynamic imaging technique based on synchrotron X-ray microtomography designed to assess the biomechanical properties of the human middle ear by comparing it to laser-Doppler vibrometry (LDV).

Methods: We examined three fresh-frozen temporal bones (TB), two donated by white males and one by a Black female, using dynamic synchrotron-based X-ray microtomography for 256 and 512 Hz, stimulated at 110 dB and 120 dB sound pressure level (SPL). In addition, we performed measurements on these TBs using 1D LDV, a well-established method.

Results: The normalized displacement values (µm/Pa) at the umbo and the posterior crus of the stapes are consistent or within 5-10 dB differences between all LDV and dynamic microtomography measurements and previously reported literature references. In general, the overall behavior is similar between the two measurement techniques.

Conclusion: In conclusion, our results demonstrate the suitability of dynamic synchrotron-based X-ray microtomography in studying the middle ear's biomechanics. However, this study shows that better standardization regarding acoustic stimulation and measurement points is needed to better compare the two measurement techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
57
审稿时长
6-12 weeks
期刊介绍: JARO is a peer-reviewed journal that publishes research findings from disciplines related to otolaryngology and communications sciences, including hearing, balance, speech and voice. JARO welcomes submissions describing experimental research that investigates the mechanisms underlying problems of basic and/or clinical significance. Authors are encouraged to familiarize themselves with the kinds of papers carried by JARO by looking at past issues. Clinical case studies and pharmaceutical screens are not likely to be considered unless they reveal underlying mechanisms. Methods papers are not encouraged unless they include significant new findings as well. Reviews will be published at the discretion of the editorial board; consult the editor-in-chief before submitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信