Ioanna Chouvarda, Sara Colantonio, Ana S C Verde, Ana Jimenez-Pastor, Leonor Cerdá-Alberich, Yannick Metz, Lithin Zacharias, Shereen Nabhani-Gebara, Maciej Bobowicz, Gianna Tsakou, Karim Lekadir, Manolis Tsiknakis, Luis Martí-Bonmati, Nikolaos Papanikolaou
{"title":"癌症成像中AI验证的技术和临床观点差异:注意差距!","authors":"Ioanna Chouvarda, Sara Colantonio, Ana S C Verde, Ana Jimenez-Pastor, Leonor Cerdá-Alberich, Yannick Metz, Lithin Zacharias, Shereen Nabhani-Gebara, Maciej Bobowicz, Gianna Tsakou, Karim Lekadir, Manolis Tsiknakis, Luis Martí-Bonmati, Nikolaos Papanikolaou","doi":"10.1186/s41747-024-00543-0","DOIUrl":null,"url":null,"abstract":"<p><p>Good practices in artificial intelligence (AI) model validation are key for achieving trustworthy AI. Within the cancer imaging domain, attracting the attention of clinical and technical AI enthusiasts, this work discusses current gaps in AI validation strategies, examining existing practices that are common or variable across technical groups (TGs) and clinical groups (CGs). The work is based on a set of structured questions encompassing several AI validation topics, addressed to professionals working in AI for medical imaging. A total of 49 responses were obtained and analysed to identify trends and patterns. While TGs valued transparency and traceability the most, CGs pointed out the importance of explainability. Among the topics where TGs may benefit from further exposure are stability and robustness checks, and mitigation of fairness issues. On the other hand, CGs seemed more reluctant towards synthetic data for validation and would benefit from exposure to cross-validation techniques, or segmentation metrics. Topics emerging from the open questions were utility, capability, adoption and trustworthiness. These findings on current trends in AI validation strategies may guide the creation of guidelines necessary for training the next generation of professionals working with AI in healthcare and contribute to bridging any technical-clinical gap in AI validation. RELEVANCE STATEMENT: This study recognised current gaps in understanding and applying AI validation strategies in cancer imaging and helped promote trust and adoption for interdisciplinary teams of technical and clinical researchers. KEY POINTS: Clinical and technical researchers emphasise interpretability, external validation with diverse data, and bias awareness in AI validation for cancer imaging. In cancer imaging AI research, clinical researchers prioritise explainability, while technical researchers focus on transparency and traceability, and see potential in synthetic datasets. Researchers advocate for greater homogenisation of AI validation practices in cancer imaging.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"9 1","pages":"7"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735720/pdf/","citationCount":"0","resultStr":"{\"title\":\"Differences in technical and clinical perspectives on AI validation in cancer imaging: mind the gap!\",\"authors\":\"Ioanna Chouvarda, Sara Colantonio, Ana S C Verde, Ana Jimenez-Pastor, Leonor Cerdá-Alberich, Yannick Metz, Lithin Zacharias, Shereen Nabhani-Gebara, Maciej Bobowicz, Gianna Tsakou, Karim Lekadir, Manolis Tsiknakis, Luis Martí-Bonmati, Nikolaos Papanikolaou\",\"doi\":\"10.1186/s41747-024-00543-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Good practices in artificial intelligence (AI) model validation are key for achieving trustworthy AI. Within the cancer imaging domain, attracting the attention of clinical and technical AI enthusiasts, this work discusses current gaps in AI validation strategies, examining existing practices that are common or variable across technical groups (TGs) and clinical groups (CGs). The work is based on a set of structured questions encompassing several AI validation topics, addressed to professionals working in AI for medical imaging. A total of 49 responses were obtained and analysed to identify trends and patterns. While TGs valued transparency and traceability the most, CGs pointed out the importance of explainability. Among the topics where TGs may benefit from further exposure are stability and robustness checks, and mitigation of fairness issues. On the other hand, CGs seemed more reluctant towards synthetic data for validation and would benefit from exposure to cross-validation techniques, or segmentation metrics. Topics emerging from the open questions were utility, capability, adoption and trustworthiness. These findings on current trends in AI validation strategies may guide the creation of guidelines necessary for training the next generation of professionals working with AI in healthcare and contribute to bridging any technical-clinical gap in AI validation. RELEVANCE STATEMENT: This study recognised current gaps in understanding and applying AI validation strategies in cancer imaging and helped promote trust and adoption for interdisciplinary teams of technical and clinical researchers. KEY POINTS: Clinical and technical researchers emphasise interpretability, external validation with diverse data, and bias awareness in AI validation for cancer imaging. In cancer imaging AI research, clinical researchers prioritise explainability, while technical researchers focus on transparency and traceability, and see potential in synthetic datasets. Researchers advocate for greater homogenisation of AI validation practices in cancer imaging.</p>\",\"PeriodicalId\":36926,\"journal\":{\"name\":\"European Radiology Experimental\",\"volume\":\"9 1\",\"pages\":\"7\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735720/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Radiology Experimental\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41747-024-00543-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-024-00543-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Differences in technical and clinical perspectives on AI validation in cancer imaging: mind the gap!
Good practices in artificial intelligence (AI) model validation are key for achieving trustworthy AI. Within the cancer imaging domain, attracting the attention of clinical and technical AI enthusiasts, this work discusses current gaps in AI validation strategies, examining existing practices that are common or variable across technical groups (TGs) and clinical groups (CGs). The work is based on a set of structured questions encompassing several AI validation topics, addressed to professionals working in AI for medical imaging. A total of 49 responses were obtained and analysed to identify trends and patterns. While TGs valued transparency and traceability the most, CGs pointed out the importance of explainability. Among the topics where TGs may benefit from further exposure are stability and robustness checks, and mitigation of fairness issues. On the other hand, CGs seemed more reluctant towards synthetic data for validation and would benefit from exposure to cross-validation techniques, or segmentation metrics. Topics emerging from the open questions were utility, capability, adoption and trustworthiness. These findings on current trends in AI validation strategies may guide the creation of guidelines necessary for training the next generation of professionals working with AI in healthcare and contribute to bridging any technical-clinical gap in AI validation. RELEVANCE STATEMENT: This study recognised current gaps in understanding and applying AI validation strategies in cancer imaging and helped promote trust and adoption for interdisciplinary teams of technical and clinical researchers. KEY POINTS: Clinical and technical researchers emphasise interpretability, external validation with diverse data, and bias awareness in AI validation for cancer imaging. In cancer imaging AI research, clinical researchers prioritise explainability, while technical researchers focus on transparency and traceability, and see potential in synthetic datasets. Researchers advocate for greater homogenisation of AI validation practices in cancer imaging.