塞尔维亚不同自然环境的高分辨率无人机土地覆盖测绘综合数据集。

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Bojana Ivošević, Nina Pajević, Sanja Brdar, Rana Waqar, Maryam Khan, João Valente
{"title":"塞尔维亚不同自然环境的高分辨率无人机土地覆盖测绘综合数据集。","authors":"Bojana Ivošević, Nina Pajević, Sanja Brdar, Rana Waqar, Maryam Khan, João Valente","doi":"10.1038/s41597-025-04437-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study highlights the vital role of high-resolution (HR), open-source land cover maps for food security, land use planning, and environmental protection. The scarcity of freely available HR datasets underscores the importance of multi-spectral HR aerial images. We used unmanned aerial vehicle (UAV) to capture images for a centimeter-level orthomosaics, facilitating advanced remote sensing and spatial analysis. Our method compares the efficacy and accuracy of object-based image analysis (OBIA) combined with random forest and convolutional neural networks (CNN) for land cover classification. We produced detailed land cover maps for 27 varied landscapes across Serbia, identifying nine unique land cover classes and assessing human impact on natural habitats. This resulted in a valuable dataset of HR multi-spectral orthomosaics across ecological zones, alongside land cover classification with extensive metrics and training data for each site. This dataset is a valuable resource for researchers working on habitats mapping and assessment for biodiversity monitoring studies on one side and researchers working on novel machine learning methods for land cover classification.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"66"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733027/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive dataset from high resolution UAV land cover mapping of diverse natural environments in Serbia.\",\"authors\":\"Bojana Ivošević, Nina Pajević, Sanja Brdar, Rana Waqar, Maryam Khan, João Valente\",\"doi\":\"10.1038/s41597-025-04437-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study highlights the vital role of high-resolution (HR), open-source land cover maps for food security, land use planning, and environmental protection. The scarcity of freely available HR datasets underscores the importance of multi-spectral HR aerial images. We used unmanned aerial vehicle (UAV) to capture images for a centimeter-level orthomosaics, facilitating advanced remote sensing and spatial analysis. Our method compares the efficacy and accuracy of object-based image analysis (OBIA) combined with random forest and convolutional neural networks (CNN) for land cover classification. We produced detailed land cover maps for 27 varied landscapes across Serbia, identifying nine unique land cover classes and assessing human impact on natural habitats. This resulted in a valuable dataset of HR multi-spectral orthomosaics across ecological zones, alongside land cover classification with extensive metrics and training data for each site. This dataset is a valuable resource for researchers working on habitats mapping and assessment for biodiversity monitoring studies on one side and researchers working on novel machine learning methods for land cover classification.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"12 1\",\"pages\":\"66\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733027/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-025-04437-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04437-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究强调了高分辨率(HR)、开源土地覆盖图在粮食安全、土地利用规划和环境保护方面的重要作用。可免费获得的HR数据集的稀缺性强调了多光谱HR航空图像的重要性。我们利用无人机(UAV)捕获了厘米级正形图像,为先进的遥感和空间分析提供了便利。我们的方法比较了基于目标的图像分析(OBIA)与随机森林和卷积神经网络(CNN)相结合的土地覆盖分类的有效性和准确性。我们绘制了塞尔维亚27个不同景观的详细土地覆盖地图,确定了9个独特的土地覆盖类别,并评估了人类对自然栖息地的影响。这产生了一个跨生态区的有价值的HR多光谱正形图数据集,以及每个站点的土地覆盖分类和广泛的指标和训练数据。该数据集对于从事生物多样性监测研究的栖息地测绘和评估的研究人员以及从事土地覆盖分类的新型机器学习方法的研究人员来说是一个宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive dataset from high resolution UAV land cover mapping of diverse natural environments in Serbia.

This study highlights the vital role of high-resolution (HR), open-source land cover maps for food security, land use planning, and environmental protection. The scarcity of freely available HR datasets underscores the importance of multi-spectral HR aerial images. We used unmanned aerial vehicle (UAV) to capture images for a centimeter-level orthomosaics, facilitating advanced remote sensing and spatial analysis. Our method compares the efficacy and accuracy of object-based image analysis (OBIA) combined with random forest and convolutional neural networks (CNN) for land cover classification. We produced detailed land cover maps for 27 varied landscapes across Serbia, identifying nine unique land cover classes and assessing human impact on natural habitats. This resulted in a valuable dataset of HR multi-spectral orthomosaics across ecological zones, alongside land cover classification with extensive metrics and training data for each site. This dataset is a valuable resource for researchers working on habitats mapping and assessment for biodiversity monitoring studies on one side and researchers working on novel machine learning methods for land cover classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信