Saad Said Alqahtany, Asadullah Shaikh, Ali Alqazzaz
{"title":"基于增强灰狼优化(EGWO)和随机森林的物联网入侵检测机制。","authors":"Saad Said Alqahtany, Asadullah Shaikh, Ali Alqazzaz","doi":"10.1038/s41598-024-81147-x","DOIUrl":null,"url":null,"abstract":"<p><p>Smart devices are enabled via the Internet of Things (IoT) and are connected in an uninterrupted world. These connected devices pose a challenge to cybersecurity systems due attacks in network communications. Such attacks have continued to threaten the operation of systems and end-users. Therefore, Intrusion Detection Systems (IDS) remain one of the most used tools for maintaining such flaws against cyber-attacks. The dynamic and multi-dimensional threat landscape in IoT network increases the challenge of Traditional IDS. The focus of this paper aims to find the key features for developing an IDS that is reliable but also efficient in terms of computation. Therefore, Enhanced Grey Wolf Optimization (EGWO) for Feature Selection (FS) is implemented. The function of EGWO is to remove unnecessary features from datasets used for intrusion detection. To test the new FS technique and decide on an optimal set of features based on the accuracy achieved and the feature taking filters, the most recent FS approach relies on the NF-ToN-IoT dataset. The selected features are evaluated by using the Random Forest (RF) algorithm to combine multiple decision trees and create an accurate result. The experimental outcomes against the most recent procedures demonstrate the capacity of the recommended FS and classification methods to determine attacks in the IDS. Analysis of the results presents that the recommended approach performs more effectively than the other recent techniques with optimized features (i.e., 23 out of 43 features), high accuracy of 99.93% and improved convergence.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"1916"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732975/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced Grey Wolf Optimization (EGWO) and random forest based mechanism for intrusion detection in IoT networks.\",\"authors\":\"Saad Said Alqahtany, Asadullah Shaikh, Ali Alqazzaz\",\"doi\":\"10.1038/s41598-024-81147-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Smart devices are enabled via the Internet of Things (IoT) and are connected in an uninterrupted world. These connected devices pose a challenge to cybersecurity systems due attacks in network communications. Such attacks have continued to threaten the operation of systems and end-users. Therefore, Intrusion Detection Systems (IDS) remain one of the most used tools for maintaining such flaws against cyber-attacks. The dynamic and multi-dimensional threat landscape in IoT network increases the challenge of Traditional IDS. The focus of this paper aims to find the key features for developing an IDS that is reliable but also efficient in terms of computation. Therefore, Enhanced Grey Wolf Optimization (EGWO) for Feature Selection (FS) is implemented. The function of EGWO is to remove unnecessary features from datasets used for intrusion detection. To test the new FS technique and decide on an optimal set of features based on the accuracy achieved and the feature taking filters, the most recent FS approach relies on the NF-ToN-IoT dataset. The selected features are evaluated by using the Random Forest (RF) algorithm to combine multiple decision trees and create an accurate result. The experimental outcomes against the most recent procedures demonstrate the capacity of the recommended FS and classification methods to determine attacks in the IDS. Analysis of the results presents that the recommended approach performs more effectively than the other recent techniques with optimized features (i.e., 23 out of 43 features), high accuracy of 99.93% and improved convergence.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"1916\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732975/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-81147-x\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-81147-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Enhanced Grey Wolf Optimization (EGWO) and random forest based mechanism for intrusion detection in IoT networks.
Smart devices are enabled via the Internet of Things (IoT) and are connected in an uninterrupted world. These connected devices pose a challenge to cybersecurity systems due attacks in network communications. Such attacks have continued to threaten the operation of systems and end-users. Therefore, Intrusion Detection Systems (IDS) remain one of the most used tools for maintaining such flaws against cyber-attacks. The dynamic and multi-dimensional threat landscape in IoT network increases the challenge of Traditional IDS. The focus of this paper aims to find the key features for developing an IDS that is reliable but also efficient in terms of computation. Therefore, Enhanced Grey Wolf Optimization (EGWO) for Feature Selection (FS) is implemented. The function of EGWO is to remove unnecessary features from datasets used for intrusion detection. To test the new FS technique and decide on an optimal set of features based on the accuracy achieved and the feature taking filters, the most recent FS approach relies on the NF-ToN-IoT dataset. The selected features are evaluated by using the Random Forest (RF) algorithm to combine multiple decision trees and create an accurate result. The experimental outcomes against the most recent procedures demonstrate the capacity of the recommended FS and classification methods to determine attacks in the IDS. Analysis of the results presents that the recommended approach performs more effectively than the other recent techniques with optimized features (i.e., 23 out of 43 features), high accuracy of 99.93% and improved convergence.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.