对有注释的细菌生物膜图像进行深度生成建模。

IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Angelina A Holicheva, Konstantin S Kozlov, Daniil A Boiko, Maxim S Kamanin, Daria V Provotorova, Nikita I Kolomoets, Valentine P Ananikov
{"title":"对有注释的细菌生物膜图像进行深度生成建模。","authors":"Angelina A Holicheva, Konstantin S Kozlov, Daniil A Boiko, Maxim S Kamanin, Daria V Provotorova, Nikita I Kolomoets, Valentine P Ananikov","doi":"10.1038/s41522-025-00647-4","DOIUrl":null,"url":null,"abstract":"<p><p>Biofilms are critical for understanding environmental processes, developing biotechnology applications, and progressing in medical treatments of various infections. Nowadays, a key limiting factor for biofilm analysis is the difficulty in obtaining large datasets with fully annotated images. This study introduces a versatile approach for creating synthetic datasets of annotated biofilm images with employing deep generative modeling techniques, including VAEs, GANs, diffusion models, and CycleGAN. Synthetic datasets can significantly improve the training of computer vision models for automated biofilm analysis, as demonstrated with the application of Mask R-CNN detection model. The approach represents a key advance in the field of biofilm research, offering a scalable solution for generating high-quality training data and working with different strains of microorganisms at different stages of formation. Terabyte-scale datasets can be easily generated on personal computers. A web application is provided for the on-demand generation of biofilm images.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"16"},"PeriodicalIF":7.8000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733122/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep generative modeling of annotated bacterial biofilm images.\",\"authors\":\"Angelina A Holicheva, Konstantin S Kozlov, Daniil A Boiko, Maxim S Kamanin, Daria V Provotorova, Nikita I Kolomoets, Valentine P Ananikov\",\"doi\":\"10.1038/s41522-025-00647-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biofilms are critical for understanding environmental processes, developing biotechnology applications, and progressing in medical treatments of various infections. Nowadays, a key limiting factor for biofilm analysis is the difficulty in obtaining large datasets with fully annotated images. This study introduces a versatile approach for creating synthetic datasets of annotated biofilm images with employing deep generative modeling techniques, including VAEs, GANs, diffusion models, and CycleGAN. Synthetic datasets can significantly improve the training of computer vision models for automated biofilm analysis, as demonstrated with the application of Mask R-CNN detection model. The approach represents a key advance in the field of biofilm research, offering a scalable solution for generating high-quality training data and working with different strains of microorganisms at different stages of formation. Terabyte-scale datasets can be easily generated on personal computers. A web application is provided for the on-demand generation of biofilm images.</p>\",\"PeriodicalId\":19370,\"journal\":{\"name\":\"npj Biofilms and Microbiomes\",\"volume\":\"11 1\",\"pages\":\"16\"},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733122/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biofilms and Microbiomes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41522-025-00647-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00647-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物膜对于了解环境过程、开发生物技术应用以及在各种感染的医学治疗中取得进展至关重要。目前,生物膜分析的一个关键限制因素是难以获得具有完整注释图像的大型数据集。本研究介绍了一种通用的方法,通过使用深度生成建模技术,包括VAEs、gan、扩散模型和CycleGAN,来创建带注释的生物膜图像的合成数据集。合成数据集可以显著提高自动生物膜分析的计算机视觉模型的训练,Mask R-CNN检测模型的应用证明了这一点。该方法代表了生物膜研究领域的一项关键进展,为生成高质量的训练数据和处理不同形成阶段的不同微生物菌株提供了可扩展的解决方案。tb规模的数据集可以很容易地在个人电脑上生成。为按需生成生物膜图像提供了一个web应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep generative modeling of annotated bacterial biofilm images.

Biofilms are critical for understanding environmental processes, developing biotechnology applications, and progressing in medical treatments of various infections. Nowadays, a key limiting factor for biofilm analysis is the difficulty in obtaining large datasets with fully annotated images. This study introduces a versatile approach for creating synthetic datasets of annotated biofilm images with employing deep generative modeling techniques, including VAEs, GANs, diffusion models, and CycleGAN. Synthetic datasets can significantly improve the training of computer vision models for automated biofilm analysis, as demonstrated with the application of Mask R-CNN detection model. The approach represents a key advance in the field of biofilm research, offering a scalable solution for generating high-quality training data and working with different strains of microorganisms at different stages of formation. Terabyte-scale datasets can be easily generated on personal computers. A web application is provided for the on-demand generation of biofilm images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Biofilms and Microbiomes
npj Biofilms and Microbiomes Immunology and Microbiology-Microbiology
CiteScore
12.10
自引率
3.30%
发文量
91
审稿时长
9 weeks
期刊介绍: npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信