Ag@AuNWs血清代谢指纹图谱在外伤性脑损伤诊断中的应用。

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jingling Qiang, Yanling Liu, Jian Zhu
{"title":"Ag@AuNWs血清代谢指纹图谱在外伤性脑损伤诊断中的应用。","authors":"Jingling Qiang, Yanling Liu, Jian Zhu","doi":"10.1088/1361-6528/ada9f2","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate and rapid diagnosis of traumatic brain injury (TBI) is essential for high-quality medical services. Nonetheless, the current diagnostic platform still has challenges in rapidly and accurately analysing clinical samples. Here, we prepared a highly stable, repeatable and sensitive gold-plated silver core-shell nanowire (Ag@AuNWs) for surface-enhanced Raman spectroscopy (SERS) metabolic fingerprint diagnosis of TBI. The core-shell structure significantly enhanced SERS intensity and enables the direct detection of 10 μL serum within seconds. The principal component analysis-linear discriminant analysis (PCA-LDA) and partial least squaresdiscriminant analysis (PLS-DA) are used to evaluate the classification effect of this technology on TBI, respectively. The diagnosis accuracy rate of PCA-LDA and PLS-DA is 73.3% and 86.7% for diagnosing TBI, respectively. Consequently, the PLS-DA model is the optimal selection for distinguishing between the TBI and sham groups. This research will facilitate the application-oriented creation of novel materials with tailored structural designs and the formulation of innovative precision medical protocols in the imminent future.&#xD.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Serum metabolic fingerprinting on Ag@AuNWs for traumatic brain injury diagnosis.\",\"authors\":\"Jingling Qiang, Yanling Liu, Jian Zhu\",\"doi\":\"10.1088/1361-6528/ada9f2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate and rapid diagnosis of traumatic brain injury (TBI) is essential for high-quality medical services. Nonetheless, the current diagnostic platform still has challenges in rapidly and accurately analysing clinical samples. Here, we prepared a highly stable, repeatable and sensitive gold-plated silver core-shell nanowire (Ag@AuNWs) for surface-enhanced Raman spectroscopy (SERS) metabolic fingerprint diagnosis of TBI. The core-shell structure significantly enhanced SERS intensity and enables the direct detection of 10 μL serum within seconds. The principal component analysis-linear discriminant analysis (PCA-LDA) and partial least squaresdiscriminant analysis (PLS-DA) are used to evaluate the classification effect of this technology on TBI, respectively. The diagnosis accuracy rate of PCA-LDA and PLS-DA is 73.3% and 86.7% for diagnosing TBI, respectively. Consequently, the PLS-DA model is the optimal selection for distinguishing between the TBI and sham groups. This research will facilitate the application-oriented creation of novel materials with tailored structural designs and the formulation of innovative precision medical protocols in the imminent future.&#xD.</p>\",\"PeriodicalId\":19035,\"journal\":{\"name\":\"Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6528/ada9f2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ada9f2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

准确和快速诊断创伤性脑损伤(TBI)对高质量的医疗服务至关重要。然而,目前的诊断平台在快速准确地分析临床样本方面仍然存在挑战。在此,我们制备了一种高度稳定、可重复和敏感的镀金银核壳纳米线(Ag@AuNWs),用于表面增强拉曼光谱(SERS)代谢指纹诊断TBI。核壳结构显著增强了SERS强度,可在秒内直接检测10 μL血清。采用主成分分析-线性判别分析(PCA-LDA)和偏最小二乘判别分析(PLS-DA)分别评价了该技术对TBI的分类效果。PCA-LDA和PLS-DA对TBI的诊断准确率分别为73.3%和86.7%。因此,PLS-DA模型是区分TBI组和假手术组的最佳选择。这项研究将在不久的将来促进以应用为导向的新型材料的定制结构设计和创新精准医疗方案的制定。 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Serum metabolic fingerprinting on Ag@AuNWs for traumatic brain injury diagnosis.

Accurate and rapid diagnosis of traumatic brain injury (TBI) is essential for high-quality medical services. Nonetheless, the current diagnostic platform still has challenges in rapidly and accurately analysing clinical samples. Here, we prepared a highly stable, repeatable and sensitive gold-plated silver core-shell nanowire (Ag@AuNWs) for surface-enhanced Raman spectroscopy (SERS) metabolic fingerprint diagnosis of TBI. The core-shell structure significantly enhanced SERS intensity and enables the direct detection of 10 μL serum within seconds. The principal component analysis-linear discriminant analysis (PCA-LDA) and partial least squaresdiscriminant analysis (PLS-DA) are used to evaluate the classification effect of this technology on TBI, respectively. The diagnosis accuracy rate of PCA-LDA and PLS-DA is 73.3% and 86.7% for diagnosing TBI, respectively. Consequently, the PLS-DA model is the optimal selection for distinguishing between the TBI and sham groups. This research will facilitate the application-oriented creation of novel materials with tailored structural designs and the formulation of innovative precision medical protocols in the imminent future. .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信