海胆肠道细菌群落以海藻为食,并含有固氮共生体。

IF 3.5 3区 生物学 Q2 MICROBIOLOGY
Mia M Bengtsson, Marita Helgesen, Haitao Wang, Stein Fredriksen, Kjell Magnus Norderhaug
{"title":"海胆肠道细菌群落以海藻为食,并含有固氮共生体。","authors":"Mia M Bengtsson, Marita Helgesen, Haitao Wang, Stein Fredriksen, Kjell Magnus Norderhaug","doi":"10.1093/femsec/fiaf006","DOIUrl":null,"url":null,"abstract":"<p><p>Kelp deforestation by sea urchin grazing is a widespread phenomenon globally, with vast consequences for coastal ecosystems. The ability of sea urchins to survive on a kelp diet of poor nutritional quality is not well understood and bacterial communities in the sea urchin intestine may play an important role in digestion. A no-choice feeding experiment was conducted with the sea urchin Strongylocentrotus droebachiensis, offering three different seaweeds as diet, including the kelp Saccharina latissima. Starved sea urchins served as experimental control. Amplicons of the 16S rRNA gene were analyzed from fecal pellets. One dominant symbiont (Psychromonas marina) accounted for 44% of all sequence reads and was especially abundant in the sea urchins fed seaweed diets. The starved and field captured sea urchins consistently displayed higher diversity than the seaweed-fed sea urchins. Cloning and sequencing of the nifH gene revealed diverse nitrogen fixers. We demonstrate that the sea urchin intestinal microbiome is dynamic, with bacterial communities that are plastic depending on diet and have the capacity for nitrogen fixation. This reflects the dietary flexibility of these sea urchins, and their intestinal microbiota could be a key component in understanding catastrophic kelp forest grazing events.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sea urchin intestinal bacterial communities depend on seaweed diet and contain nitrogen-fixing symbionts.\",\"authors\":\"Mia M Bengtsson, Marita Helgesen, Haitao Wang, Stein Fredriksen, Kjell Magnus Norderhaug\",\"doi\":\"10.1093/femsec/fiaf006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Kelp deforestation by sea urchin grazing is a widespread phenomenon globally, with vast consequences for coastal ecosystems. The ability of sea urchins to survive on a kelp diet of poor nutritional quality is not well understood and bacterial communities in the sea urchin intestine may play an important role in digestion. A no-choice feeding experiment was conducted with the sea urchin Strongylocentrotus droebachiensis, offering three different seaweeds as diet, including the kelp Saccharina latissima. Starved sea urchins served as experimental control. Amplicons of the 16S rRNA gene were analyzed from fecal pellets. One dominant symbiont (Psychromonas marina) accounted for 44% of all sequence reads and was especially abundant in the sea urchins fed seaweed diets. The starved and field captured sea urchins consistently displayed higher diversity than the seaweed-fed sea urchins. Cloning and sequencing of the nifH gene revealed diverse nitrogen fixers. We demonstrate that the sea urchin intestinal microbiome is dynamic, with bacterial communities that are plastic depending on diet and have the capacity for nitrogen fixation. This reflects the dietary flexibility of these sea urchins, and their intestinal microbiota could be a key component in understanding catastrophic kelp forest grazing events.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiaf006\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf006","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

海胆放牧导致的海带砍伐是全球普遍存在的现象,对沿海生态系统造成了巨大影响。海胆在营养质量差的海带饮食中生存的能力尚不清楚,海胆肠道中的细菌群落可能在消化中发挥重要作用。采用三种不同的海藻(包括糖藻)作为海胆的饲料,进行了无选择饲养试验。饥饿的海胆作为实验对照。从粪球中分析16S rRNA基因扩增子。一种优势共生体(滨海冷单胞菌)占所有序列读数的44%,在以海藻为食的海胆中尤其丰富。饥饿和野外捕获的海胆始终比海藻喂养的海胆表现出更高的多样性。nifH基因的克隆和测序揭示了多种固氮分子。我们证明了海胆肠道微生物群是动态的,细菌群落是可塑的,取决于饮食和具有固氮能力。这反映了这些海胆的饮食灵活性,它们的肠道微生物群可能是理解灾难性海带森林放牧事件的关键组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sea urchin intestinal bacterial communities depend on seaweed diet and contain nitrogen-fixing symbionts.

Kelp deforestation by sea urchin grazing is a widespread phenomenon globally, with vast consequences for coastal ecosystems. The ability of sea urchins to survive on a kelp diet of poor nutritional quality is not well understood and bacterial communities in the sea urchin intestine may play an important role in digestion. A no-choice feeding experiment was conducted with the sea urchin Strongylocentrotus droebachiensis, offering three different seaweeds as diet, including the kelp Saccharina latissima. Starved sea urchins served as experimental control. Amplicons of the 16S rRNA gene were analyzed from fecal pellets. One dominant symbiont (Psychromonas marina) accounted for 44% of all sequence reads and was especially abundant in the sea urchins fed seaweed diets. The starved and field captured sea urchins consistently displayed higher diversity than the seaweed-fed sea urchins. Cloning and sequencing of the nifH gene revealed diverse nitrogen fixers. We demonstrate that the sea urchin intestinal microbiome is dynamic, with bacterial communities that are plastic depending on diet and have the capacity for nitrogen fixation. This reflects the dietary flexibility of these sea urchins, and their intestinal microbiota could be a key component in understanding catastrophic kelp forest grazing events.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信