Laila Dainize Finotelli, Carlos Henrique Gomes Martins, Sara Lemes de Souza, Anna Livia Oliveira Santos, Mariana Brentini Santiago, Sérgio Ricardo Ambrósio, Rodrigo Cássio Sola Veneziani, Renato Luis Tame Parreira, Leandro Aparecido Mello, Lucas de Freitas Pereira, Fernanda Gosuen Gonçalves Dias
{"title":"合成聚合物聚六亚甲基胍对牙髓微生物的微生物学及毒性分析。","authors":"Laila Dainize Finotelli, Carlos Henrique Gomes Martins, Sara Lemes de Souza, Anna Livia Oliveira Santos, Mariana Brentini Santiago, Sérgio Ricardo Ambrósio, Rodrigo Cássio Sola Veneziani, Renato Luis Tame Parreira, Leandro Aparecido Mello, Lucas de Freitas Pereira, Fernanda Gosuen Gonçalves Dias","doi":"10.1007/s42770-024-01603-8","DOIUrl":null,"url":null,"abstract":"<p><p>Failures in endodontic treatments are common due to microbial resistance in the pulp canal. The study evaluated the in vitro activity of polyhexamethylene guanidine hydrochloride (PHMGH) against endodontic strains, as well as in vivo toxicity. Using minimum inhibitory concentration and minimum bactericidal concentration techniques, PHMGH was effective against all microorganisms, even at low concentrations. At 50.0 µg/mL, it inhibited Enterococcus faecalis; furthermore, when compared to chlorhexidine (CLX), it demonstrated values 19 times lower against Candida albicans. The polymer's activity was also determined by agar diffusion, evaluating products A (calcium hydroxide - Ca(OH)2, as a reference), B (Ca(OH)2 combined with physiological solution, reference with a vehicle), C (PHMGH 6.25%), D (PHMGH 3.125%), E (PHMGH 1.5625%), F (PHMGH 0.78125%), G (PHMGH 6.25% and Ca(OH)2), H (PHMGH 3.125% and Ca(OH)2), I (PHMGH 1.5625% and Ca(OH)2), J (PHMGH 0.78125% and Ca(OH)2), and K (positive control, CLX 0.12%). Products containing PHMGH were more effective than the references against all strains, and C, D, and G were more effective than CLX against Peptostreptococcus anaerobius, Actinomyces naeslundii, and Actinomyces viscosus. According to the fractional inhibitory concentration index, the combination of PHMGH and CLX showed indifference for Peptostreptococcus anaerobius, Actinomyces naeslundii, Actinomyces viscosus and Escherichia coli, antagonism for Candida albicans, and synergy for Enterococcus faecalis. The toxicity of PHMGH at different concentrations was tested in Caenorhabditis elegans and did not show lethality in nematodes, with the LC50 observed only at the highest concentration (100 µg/mL) after two days of exposure. It is suggested that PHMGH exhibited antimicrobial activity against endodontic strains and low toxicity, raising expectations for new preventive and therapeutic products in endodontics.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbiological and toxicity analyses of the synthetic polymer polyhexamethylene guanidine hydrochloride against endodontic microorganisms.\",\"authors\":\"Laila Dainize Finotelli, Carlos Henrique Gomes Martins, Sara Lemes de Souza, Anna Livia Oliveira Santos, Mariana Brentini Santiago, Sérgio Ricardo Ambrósio, Rodrigo Cássio Sola Veneziani, Renato Luis Tame Parreira, Leandro Aparecido Mello, Lucas de Freitas Pereira, Fernanda Gosuen Gonçalves Dias\",\"doi\":\"10.1007/s42770-024-01603-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Failures in endodontic treatments are common due to microbial resistance in the pulp canal. The study evaluated the in vitro activity of polyhexamethylene guanidine hydrochloride (PHMGH) against endodontic strains, as well as in vivo toxicity. Using minimum inhibitory concentration and minimum bactericidal concentration techniques, PHMGH was effective against all microorganisms, even at low concentrations. At 50.0 µg/mL, it inhibited Enterococcus faecalis; furthermore, when compared to chlorhexidine (CLX), it demonstrated values 19 times lower against Candida albicans. The polymer's activity was also determined by agar diffusion, evaluating products A (calcium hydroxide - Ca(OH)2, as a reference), B (Ca(OH)2 combined with physiological solution, reference with a vehicle), C (PHMGH 6.25%), D (PHMGH 3.125%), E (PHMGH 1.5625%), F (PHMGH 0.78125%), G (PHMGH 6.25% and Ca(OH)2), H (PHMGH 3.125% and Ca(OH)2), I (PHMGH 1.5625% and Ca(OH)2), J (PHMGH 0.78125% and Ca(OH)2), and K (positive control, CLX 0.12%). Products containing PHMGH were more effective than the references against all strains, and C, D, and G were more effective than CLX against Peptostreptococcus anaerobius, Actinomyces naeslundii, and Actinomyces viscosus. According to the fractional inhibitory concentration index, the combination of PHMGH and CLX showed indifference for Peptostreptococcus anaerobius, Actinomyces naeslundii, Actinomyces viscosus and Escherichia coli, antagonism for Candida albicans, and synergy for Enterococcus faecalis. The toxicity of PHMGH at different concentrations was tested in Caenorhabditis elegans and did not show lethality in nematodes, with the LC50 observed only at the highest concentration (100 µg/mL) after two days of exposure. It is suggested that PHMGH exhibited antimicrobial activity against endodontic strains and low toxicity, raising expectations for new preventive and therapeutic products in endodontics.</p>\",\"PeriodicalId\":9090,\"journal\":{\"name\":\"Brazilian Journal of Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s42770-024-01603-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42770-024-01603-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Microbiological and toxicity analyses of the synthetic polymer polyhexamethylene guanidine hydrochloride against endodontic microorganisms.
Failures in endodontic treatments are common due to microbial resistance in the pulp canal. The study evaluated the in vitro activity of polyhexamethylene guanidine hydrochloride (PHMGH) against endodontic strains, as well as in vivo toxicity. Using minimum inhibitory concentration and minimum bactericidal concentration techniques, PHMGH was effective against all microorganisms, even at low concentrations. At 50.0 µg/mL, it inhibited Enterococcus faecalis; furthermore, when compared to chlorhexidine (CLX), it demonstrated values 19 times lower against Candida albicans. The polymer's activity was also determined by agar diffusion, evaluating products A (calcium hydroxide - Ca(OH)2, as a reference), B (Ca(OH)2 combined with physiological solution, reference with a vehicle), C (PHMGH 6.25%), D (PHMGH 3.125%), E (PHMGH 1.5625%), F (PHMGH 0.78125%), G (PHMGH 6.25% and Ca(OH)2), H (PHMGH 3.125% and Ca(OH)2), I (PHMGH 1.5625% and Ca(OH)2), J (PHMGH 0.78125% and Ca(OH)2), and K (positive control, CLX 0.12%). Products containing PHMGH were more effective than the references against all strains, and C, D, and G were more effective than CLX against Peptostreptococcus anaerobius, Actinomyces naeslundii, and Actinomyces viscosus. According to the fractional inhibitory concentration index, the combination of PHMGH and CLX showed indifference for Peptostreptococcus anaerobius, Actinomyces naeslundii, Actinomyces viscosus and Escherichia coli, antagonism for Candida albicans, and synergy for Enterococcus faecalis. The toxicity of PHMGH at different concentrations was tested in Caenorhabditis elegans and did not show lethality in nematodes, with the LC50 observed only at the highest concentration (100 µg/mL) after two days of exposure. It is suggested that PHMGH exhibited antimicrobial activity against endodontic strains and low toxicity, raising expectations for new preventive and therapeutic products in endodontics.
期刊介绍:
The Brazilian Journal of Microbiology is an international peer reviewed journal that covers a wide-range of research on fundamental and applied aspects of microbiology.
The journal considers for publication original research articles, short communications, reviews, and letters to the editor, that may be submitted to the following sections: Biotechnology and Industrial Microbiology, Food Microbiology, Bacterial and Fungal Pathogenesis, Clinical Microbiology, Environmental Microbiology, Veterinary Microbiology, Fungal and Bacterial Physiology, Bacterial, Fungal and Virus Molecular Biology, Education in Microbiology. For more details on each section, please check out the instructions for authors.
The journal is the official publication of the Brazilian Society of Microbiology and currently publishes 4 issues per year.