Pablo Quijano Velasco, Kedar Hippalgaonkar, Balamurugan Ramalingam
{"title":"通过高通量工具和机器学习优化有机合成的新趋势。","authors":"Pablo Quijano Velasco, Kedar Hippalgaonkar, Balamurugan Ramalingam","doi":"10.3762/bjoc.21.3","DOIUrl":null,"url":null,"abstract":"<p><p>The discovery of the optimal conditions for chemical reactions is a labor-intensive, time-consuming task that requires exploring a high-dimensional parametric space. Historically, the optimization of chemical reactions has been performed by manual experimentation guided by human intuition and through the design of experiments where reaction variables are modified one at a time to find the optimal conditions for a specific reaction outcome. Recently, a paradigm change in chemical reaction optimization has been enabled by advances in lab automation and the introduction of machine learning algorithms. Therein, multiple reaction variables can be synchronously optimized to obtain the optimal reaction conditions, requiring a shorter experimentation time and minimal human intervention. Herein, we review the currently used state-of-the-art high-throughput automated chemical reaction platforms and machine learning algorithms that drive the optimization of chemical reactions, highlighting the limitations and future opportunities of this new field of research.</p>","PeriodicalId":8756,"journal":{"name":"Beilstein Journal of Organic Chemistry","volume":"21 ","pages":"10-38"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730176/pdf/","citationCount":"0","resultStr":"{\"title\":\"Emerging trends in the optimization of organic synthesis through high-throughput tools and machine learning.\",\"authors\":\"Pablo Quijano Velasco, Kedar Hippalgaonkar, Balamurugan Ramalingam\",\"doi\":\"10.3762/bjoc.21.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The discovery of the optimal conditions for chemical reactions is a labor-intensive, time-consuming task that requires exploring a high-dimensional parametric space. Historically, the optimization of chemical reactions has been performed by manual experimentation guided by human intuition and through the design of experiments where reaction variables are modified one at a time to find the optimal conditions for a specific reaction outcome. Recently, a paradigm change in chemical reaction optimization has been enabled by advances in lab automation and the introduction of machine learning algorithms. Therein, multiple reaction variables can be synchronously optimized to obtain the optimal reaction conditions, requiring a shorter experimentation time and minimal human intervention. Herein, we review the currently used state-of-the-art high-throughput automated chemical reaction platforms and machine learning algorithms that drive the optimization of chemical reactions, highlighting the limitations and future opportunities of this new field of research.</p>\",\"PeriodicalId\":8756,\"journal\":{\"name\":\"Beilstein Journal of Organic Chemistry\",\"volume\":\"21 \",\"pages\":\"10-38\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730176/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beilstein Journal of Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3762/bjoc.21.3\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3762/bjoc.21.3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Emerging trends in the optimization of organic synthesis through high-throughput tools and machine learning.
The discovery of the optimal conditions for chemical reactions is a labor-intensive, time-consuming task that requires exploring a high-dimensional parametric space. Historically, the optimization of chemical reactions has been performed by manual experimentation guided by human intuition and through the design of experiments where reaction variables are modified one at a time to find the optimal conditions for a specific reaction outcome. Recently, a paradigm change in chemical reaction optimization has been enabled by advances in lab automation and the introduction of machine learning algorithms. Therein, multiple reaction variables can be synchronously optimized to obtain the optimal reaction conditions, requiring a shorter experimentation time and minimal human intervention. Herein, we review the currently used state-of-the-art high-throughput automated chemical reaction platforms and machine learning algorithms that drive the optimization of chemical reactions, highlighting the limitations and future opportunities of this new field of research.
期刊介绍:
The Beilstein Journal of Organic Chemistry is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in organic chemistry.
The journal publishes high quality research and reviews in all areas of organic chemistry, including organic synthesis, organic reactions, natural product chemistry, structural investigations, supramolecular chemistry and chemical biology.