{"title":"二级处理废水中颗粒相关病毒的定量分析。","authors":"Huiyun Wu, Keegan Brighton, Jiahao Chen, Danmeng Shuai, Tiong Gim Aw","doi":"10.1007/s12560-025-09634-6","DOIUrl":null,"url":null,"abstract":"<div><p>Viruses can interact with a broad range of inorganic and organic particles in water and wastewater. These associations can protect viruses from inactivation by quenching chemical disinfectants or blocking ultraviolet light transmission, and a much higher dosage of disinfectants is required to inactivate particle-associated viruses than free viruses. There have been only few studies of the association of viruses with particles in wastewater, particularly in secondary treated effluent. As secondary effluent is the source water to the reclaimed water treatment system, this study quantified indigenous enteric viruses, and viral indicators associated with particles in secondary effluents collected from five full-scale water reclamation facilities in the United States. Particle-associated viruses were enumerated using a sequential filtration followed by microfluidic digital PCR. This study showed that enteric viruses and viral indicators (crAssphage and pepper mild mottle virus, PMMoV) were attached to particles of different sizes in secondary effluent. Significantly higher concentrations of RNA viruses including PMMoV, norovirus, and enterovirus were detected in filtrate of the sequential filtration, which contained particles < 0.45 µm. DNA viruses including adenovirus and crAssphage were found to be more associated with larger particles in secondary effluent. Overall, high correlations were observed between viral indicators and enteric viruses, supporting the use of crAssphage and PMMoV to evaluate virus removal efficiency in water and wastewater treatment processes. The association of viruses with particles in wastewater has significant implications on wastewater treatment and disinfection processes as well as virus enumeration in wastewater.</p><h3>Graphic Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":563,"journal":{"name":"Food and Environmental Virology","volume":"17 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12560-025-09634-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantification of Particle-Associated Viruses in Secondary Treated Wastewater Effluent\",\"authors\":\"Huiyun Wu, Keegan Brighton, Jiahao Chen, Danmeng Shuai, Tiong Gim Aw\",\"doi\":\"10.1007/s12560-025-09634-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Viruses can interact with a broad range of inorganic and organic particles in water and wastewater. These associations can protect viruses from inactivation by quenching chemical disinfectants or blocking ultraviolet light transmission, and a much higher dosage of disinfectants is required to inactivate particle-associated viruses than free viruses. There have been only few studies of the association of viruses with particles in wastewater, particularly in secondary treated effluent. As secondary effluent is the source water to the reclaimed water treatment system, this study quantified indigenous enteric viruses, and viral indicators associated with particles in secondary effluents collected from five full-scale water reclamation facilities in the United States. Particle-associated viruses were enumerated using a sequential filtration followed by microfluidic digital PCR. This study showed that enteric viruses and viral indicators (crAssphage and pepper mild mottle virus, PMMoV) were attached to particles of different sizes in secondary effluent. Significantly higher concentrations of RNA viruses including PMMoV, norovirus, and enterovirus were detected in filtrate of the sequential filtration, which contained particles < 0.45 µm. DNA viruses including adenovirus and crAssphage were found to be more associated with larger particles in secondary effluent. Overall, high correlations were observed between viral indicators and enteric viruses, supporting the use of crAssphage and PMMoV to evaluate virus removal efficiency in water and wastewater treatment processes. The association of viruses with particles in wastewater has significant implications on wastewater treatment and disinfection processes as well as virus enumeration in wastewater.</p><h3>Graphic Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":563,\"journal\":{\"name\":\"Food and Environmental Virology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12560-025-09634-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Environmental Virology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12560-025-09634-6\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Environmental Virology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12560-025-09634-6","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Quantification of Particle-Associated Viruses in Secondary Treated Wastewater Effluent
Viruses can interact with a broad range of inorganic and organic particles in water and wastewater. These associations can protect viruses from inactivation by quenching chemical disinfectants or blocking ultraviolet light transmission, and a much higher dosage of disinfectants is required to inactivate particle-associated viruses than free viruses. There have been only few studies of the association of viruses with particles in wastewater, particularly in secondary treated effluent. As secondary effluent is the source water to the reclaimed water treatment system, this study quantified indigenous enteric viruses, and viral indicators associated with particles in secondary effluents collected from five full-scale water reclamation facilities in the United States. Particle-associated viruses were enumerated using a sequential filtration followed by microfluidic digital PCR. This study showed that enteric viruses and viral indicators (crAssphage and pepper mild mottle virus, PMMoV) were attached to particles of different sizes in secondary effluent. Significantly higher concentrations of RNA viruses including PMMoV, norovirus, and enterovirus were detected in filtrate of the sequential filtration, which contained particles < 0.45 µm. DNA viruses including adenovirus and crAssphage were found to be more associated with larger particles in secondary effluent. Overall, high correlations were observed between viral indicators and enteric viruses, supporting the use of crAssphage and PMMoV to evaluate virus removal efficiency in water and wastewater treatment processes. The association of viruses with particles in wastewater has significant implications on wastewater treatment and disinfection processes as well as virus enumeration in wastewater.
期刊介绍:
Food and Environmental Virology publishes original articles, notes and review articles on any aspect relating to the transmission of pathogenic viruses via the environment (water, air, soil etc.) and foods. This includes epidemiological studies, identification of novel or emerging pathogens, methods of analysis or characterisation, studies on survival and elimination, and development of procedural controls for industrial processes, e.g. HACCP plans. The journal will cover all aspects of this important area, and encompass studies on any human, animal, and plant pathogenic virus which is capable of transmission via the environment or food.