Bei Yuan , Zhiqiang Li , Peiwu Li , Qi Zhang , Qingqing Yang , Xiaoqian Tang
{"title":"基因工程整合黄曲霉毒素B1和脱氧雪腐菌醇双特异性纳米体作为替代抗原,构建时间分辨免疫测定双检测方法。","authors":"Bei Yuan , Zhiqiang Li , Peiwu Li , Qi Zhang , Qingqing Yang , Xiaoqian Tang","doi":"10.1016/j.bios.2025.117137","DOIUrl":null,"url":null,"abstract":"<div><div>There is a phenomenon of combined contamination of fungal toxins, of which aflatoxin B<sub>1</sub> (AFB<sub>1</sub>) is the most toxic, and deoxynivalenol (DON) contamination is common. The use of antigens for double or multiple testing of mycotoxins is easy to cause environmental pollution, and surrogate antigens have become necessary. The small molecule and susceptibility to genetic modification of nanobodies can be used to develop alternative antigens for mycotoxins. In this study, using the nanobody gene sequences of the heavy chain recognition regions of anti-aflatoxin and deoxynivalenol monoclonal antibodies, recombinant plasmids were successfully constructed by one-step cloning, and low-temperature-induced bispecific nanobodies against AFB<sub>1</sub>-DON were obtained, which can be used as alternative antigens to reduce the pollution of the environment from mycotoxin detection. Enzyme-linked immunosorbent assay validated the bispecific nanobody, and the semi-inhibitory concentration (IC<sub>50</sub>) of the bispecific nanobody were 0.47 μg/L and 149 μg/L for AFB<sub>1</sub> and DON, respectively. Finally, a time-resolved fluorescent dual-detection test strip was constructed by this bispecific nanobody as a surrogate antigen for AFB<sub>1</sub> and DON, which was capable of detecting AFB<sub>1</sub> and DON at the same time, and the limits of detection (LOD) for the two toxins were 0.0254 μg/L and 21.4 μg/L, respectively. This method has satisfactory sensitivity and does not require antigen, which reduces the toxicity of using antigen.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"273 ","pages":"Article 117137"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetically engineered integrated aflatoxin B1 and deoxynivalenol bispecific nanobody as surrogate antigens for constructed time-resolved immunoassay dual detection methods\",\"authors\":\"Bei Yuan , Zhiqiang Li , Peiwu Li , Qi Zhang , Qingqing Yang , Xiaoqian Tang\",\"doi\":\"10.1016/j.bios.2025.117137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>There is a phenomenon of combined contamination of fungal toxins, of which aflatoxin B<sub>1</sub> (AFB<sub>1</sub>) is the most toxic, and deoxynivalenol (DON) contamination is common. The use of antigens for double or multiple testing of mycotoxins is easy to cause environmental pollution, and surrogate antigens have become necessary. The small molecule and susceptibility to genetic modification of nanobodies can be used to develop alternative antigens for mycotoxins. In this study, using the nanobody gene sequences of the heavy chain recognition regions of anti-aflatoxin and deoxynivalenol monoclonal antibodies, recombinant plasmids were successfully constructed by one-step cloning, and low-temperature-induced bispecific nanobodies against AFB<sub>1</sub>-DON were obtained, which can be used as alternative antigens to reduce the pollution of the environment from mycotoxin detection. Enzyme-linked immunosorbent assay validated the bispecific nanobody, and the semi-inhibitory concentration (IC<sub>50</sub>) of the bispecific nanobody were 0.47 μg/L and 149 μg/L for AFB<sub>1</sub> and DON, respectively. Finally, a time-resolved fluorescent dual-detection test strip was constructed by this bispecific nanobody as a surrogate antigen for AFB<sub>1</sub> and DON, which was capable of detecting AFB<sub>1</sub> and DON at the same time, and the limits of detection (LOD) for the two toxins were 0.0254 μg/L and 21.4 μg/L, respectively. This method has satisfactory sensitivity and does not require antigen, which reduces the toxicity of using antigen.</div></div>\",\"PeriodicalId\":259,\"journal\":{\"name\":\"Biosensors and Bioelectronics\",\"volume\":\"273 \",\"pages\":\"Article 117137\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956566325000119\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325000119","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Genetically engineered integrated aflatoxin B1 and deoxynivalenol bispecific nanobody as surrogate antigens for constructed time-resolved immunoassay dual detection methods
There is a phenomenon of combined contamination of fungal toxins, of which aflatoxin B1 (AFB1) is the most toxic, and deoxynivalenol (DON) contamination is common. The use of antigens for double or multiple testing of mycotoxins is easy to cause environmental pollution, and surrogate antigens have become necessary. The small molecule and susceptibility to genetic modification of nanobodies can be used to develop alternative antigens for mycotoxins. In this study, using the nanobody gene sequences of the heavy chain recognition regions of anti-aflatoxin and deoxynivalenol monoclonal antibodies, recombinant plasmids were successfully constructed by one-step cloning, and low-temperature-induced bispecific nanobodies against AFB1-DON were obtained, which can be used as alternative antigens to reduce the pollution of the environment from mycotoxin detection. Enzyme-linked immunosorbent assay validated the bispecific nanobody, and the semi-inhibitory concentration (IC50) of the bispecific nanobody were 0.47 μg/L and 149 μg/L for AFB1 and DON, respectively. Finally, a time-resolved fluorescent dual-detection test strip was constructed by this bispecific nanobody as a surrogate antigen for AFB1 and DON, which was capable of detecting AFB1 and DON at the same time, and the limits of detection (LOD) for the two toxins were 0.0254 μg/L and 21.4 μg/L, respectively. This method has satisfactory sensitivity and does not require antigen, which reduces the toxicity of using antigen.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.