Hongzhi Liang , Aori Qileng , Haoran Shen , Ziyi Zhang , Weipeng Liu , Zhen-Lin Xu , Yingju Liu
{"title":"基于光诱导能量传递的荧光光热探针的研制:一种检测非法添加剂的双读出免疫传感器。","authors":"Hongzhi Liang , Aori Qileng , Haoran Shen , Ziyi Zhang , Weipeng Liu , Zhen-Lin Xu , Yingju Liu","doi":"10.1016/j.bios.2025.117140","DOIUrl":null,"url":null,"abstract":"<div><div>The development of advanced optical probes for point-of-care testing holds great importance in the field of diagnostic technologies. This study focused on the synthesis of a probe featuring both fluorescent and photothermal responses with single excitation wavelength, which was achieved through the combination of oxidized camellia oleifera shell powder (OC) and Prussian blue nanoparticles (PBNPs). Notably, OC derived from the direct processing of raw material showed fluorescent and phosphorescent emissions simultaneously, and the positions of the two peaks overlapped with the absorbance range of PBNPs, making the fluorescent and phosphorescent emissions of OC effectively quenched by PBNPs. Meanwhile, the photothermal property of PBNPs was activated by the phosphorescent emission of OC through photoinduced energy transfer. As a proof of concept, OC@PBNPs was applied in the dual-channel immunoassay, in which illegal addictive aminopyrine (AP) was chosen as the detection target. Furthermore, a portable device was developed to capture the fluorescent and photothermal signals of OC@PBNPs, rendering the detection method based on OC@PBNPs suitable for point-of-care testing (POCT).</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"273 ","pages":"Article 117140"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of fluorescent-photothermal probe based on photoinduced energy transfer: A dual-readout immunosensor for the detection of illegal additive\",\"authors\":\"Hongzhi Liang , Aori Qileng , Haoran Shen , Ziyi Zhang , Weipeng Liu , Zhen-Lin Xu , Yingju Liu\",\"doi\":\"10.1016/j.bios.2025.117140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of advanced optical probes for point-of-care testing holds great importance in the field of diagnostic technologies. This study focused on the synthesis of a probe featuring both fluorescent and photothermal responses with single excitation wavelength, which was achieved through the combination of oxidized camellia oleifera shell powder (OC) and Prussian blue nanoparticles (PBNPs). Notably, OC derived from the direct processing of raw material showed fluorescent and phosphorescent emissions simultaneously, and the positions of the two peaks overlapped with the absorbance range of PBNPs, making the fluorescent and phosphorescent emissions of OC effectively quenched by PBNPs. Meanwhile, the photothermal property of PBNPs was activated by the phosphorescent emission of OC through photoinduced energy transfer. As a proof of concept, OC@PBNPs was applied in the dual-channel immunoassay, in which illegal addictive aminopyrine (AP) was chosen as the detection target. Furthermore, a portable device was developed to capture the fluorescent and photothermal signals of OC@PBNPs, rendering the detection method based on OC@PBNPs suitable for point-of-care testing (POCT).</div></div>\",\"PeriodicalId\":259,\"journal\":{\"name\":\"Biosensors and Bioelectronics\",\"volume\":\"273 \",\"pages\":\"Article 117140\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0956566325000144\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325000144","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Development of fluorescent-photothermal probe based on photoinduced energy transfer: A dual-readout immunosensor for the detection of illegal additive
The development of advanced optical probes for point-of-care testing holds great importance in the field of diagnostic technologies. This study focused on the synthesis of a probe featuring both fluorescent and photothermal responses with single excitation wavelength, which was achieved through the combination of oxidized camellia oleifera shell powder (OC) and Prussian blue nanoparticles (PBNPs). Notably, OC derived from the direct processing of raw material showed fluorescent and phosphorescent emissions simultaneously, and the positions of the two peaks overlapped with the absorbance range of PBNPs, making the fluorescent and phosphorescent emissions of OC effectively quenched by PBNPs. Meanwhile, the photothermal property of PBNPs was activated by the phosphorescent emission of OC through photoinduced energy transfer. As a proof of concept, OC@PBNPs was applied in the dual-channel immunoassay, in which illegal addictive aminopyrine (AP) was chosen as the detection target. Furthermore, a portable device was developed to capture the fluorescent and photothermal signals of OC@PBNPs, rendering the detection method based on OC@PBNPs suitable for point-of-care testing (POCT).
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.