Thomas Moragues, Mikhail Agrachev, Sharon Mitchell, Gunnar Jeschke, Javier Pérez-Ramírez, Andrew J deMello
{"title":"基于液滴的EPR光谱技术用于液相催化反应的实时监测。","authors":"Thomas Moragues, Mikhail Agrachev, Sharon Mitchell, Gunnar Jeschke, Javier Pérez-Ramírez, Andrew J deMello","doi":"10.1002/smtd.202401771","DOIUrl":null,"url":null,"abstract":"<p><p>In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts. To overcome these limitations, a droplet-based microfluidics platform is introduced for real-time EPR monitoring of liquid-phase catalytic reactions. By encapsulating solid and dissolved species within nanoliter droplets, this approach enables precise control over mass transport, reduces reagent consumption, and maintains uniform residence times irrespective of acquisition duration, permitting precise analysis of each spectral component under identical conditions. The platform's compatibility with standard resonators facilitates straightforward integration into any EPR spectrometer. Its versatility is demonstrated by monitoring dynamic ligand exchange processes, key for activating homogeneous catalysts, and tracking redox and radical kinetics in ascorbic acid oxidation by Cu(II) catalysts. Importantly, this method captures both supported and dissolved transition metal species, offering comprehensive insights into catalyst deactivation via metal leaching. This microfluidic approach sets a new standard for liquid-phase in situ EPR measurements, advancing studies of homogeneous and heterogeneous catalytic systems.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401771"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Droplet-Based EPR Spectroscopy for Real-Time Monitoring of Liquid-Phase Catalytic Reactions.\",\"authors\":\"Thomas Moragues, Mikhail Agrachev, Sharon Mitchell, Gunnar Jeschke, Javier Pérez-Ramírez, Andrew J deMello\",\"doi\":\"10.1002/smtd.202401771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts. To overcome these limitations, a droplet-based microfluidics platform is introduced for real-time EPR monitoring of liquid-phase catalytic reactions. By encapsulating solid and dissolved species within nanoliter droplets, this approach enables precise control over mass transport, reduces reagent consumption, and maintains uniform residence times irrespective of acquisition duration, permitting precise analysis of each spectral component under identical conditions. The platform's compatibility with standard resonators facilitates straightforward integration into any EPR spectrometer. Its versatility is demonstrated by monitoring dynamic ligand exchange processes, key for activating homogeneous catalysts, and tracking redox and radical kinetics in ascorbic acid oxidation by Cu(II) catalysts. Importantly, this method captures both supported and dissolved transition metal species, offering comprehensive insights into catalyst deactivation via metal leaching. This microfluidic approach sets a new standard for liquid-phase in situ EPR measurements, advancing studies of homogeneous and heterogeneous catalytic systems.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2401771\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401771\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401771","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Droplet-Based EPR Spectroscopy for Real-Time Monitoring of Liquid-Phase Catalytic Reactions.
In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts. To overcome these limitations, a droplet-based microfluidics platform is introduced for real-time EPR monitoring of liquid-phase catalytic reactions. By encapsulating solid and dissolved species within nanoliter droplets, this approach enables precise control over mass transport, reduces reagent consumption, and maintains uniform residence times irrespective of acquisition duration, permitting precise analysis of each spectral component under identical conditions. The platform's compatibility with standard resonators facilitates straightforward integration into any EPR spectrometer. Its versatility is demonstrated by monitoring dynamic ligand exchange processes, key for activating homogeneous catalysts, and tracking redox and radical kinetics in ascorbic acid oxidation by Cu(II) catalysts. Importantly, this method captures both supported and dissolved transition metal species, offering comprehensive insights into catalyst deactivation via metal leaching. This microfluidic approach sets a new standard for liquid-phase in situ EPR measurements, advancing studies of homogeneous and heterogeneous catalytic systems.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.