Minhao Zhou, Saghi Sadoughi, Lauren Go, Gabriella Ramil, Isabel Yu, Isra Saeed, Bo Fan, Po-Hung Wu, Isidro B Salusky, Thomas L Nickolas, Joachim H Ix, Galateia J Kazakia
{"title":"延时HR-pQCT可靠地评估和监测慢性肾脏疾病患者的局部骨转换。","authors":"Minhao Zhou, Saghi Sadoughi, Lauren Go, Gabriella Ramil, Isabel Yu, Isra Saeed, Bo Fan, Po-Hung Wu, Isidro B Salusky, Thomas L Nickolas, Joachim H Ix, Galateia J Kazakia","doi":"10.1093/jbmr/zjaf006","DOIUrl":null,"url":null,"abstract":"<p><p>Bone turnover assessment and monitoring are essential for chronic kidney disease (CKD)-associated bone care. Patients with CKD suffer from significantly elevated fracture risk due to abnormally high or low bone turnover, which requires diametrically opposite treatments informed by patient-specific bone turnover data. However, a reliable, accessible, non-invasive bone turnover assessment and monitoring tool remains an unmet clinical need. Combining time-lapse (TL) analysis with high-resolution peripheral quantitative computed tomography (HR-pQCT) scans obtained over time allows for in vivo temporospatial bone remodeling assessment. This study aimed to evaluate the feasibility of applying TL HR-pQCT to assess and monitor local bone formation and resorption in patients with CKD. A customized TL HR-pQCT pipeline was developed on a second-generation HR-pQCT platform and optimized using ex vivo cadaveric phantom and in vivo scan-rescan HR-pQCT images. The annualized least significant change in bone formation and resorption were evaluated using in vivo longitudinal reproducibility images. Finally, the feasibility of the TL HR-pQCT pipeline in assessing and monitoring bone turnover was evaluated in patients with end stage kidney disease (ESKD; n = 9). We found that a 2-month time-lapse period was sufficient for the TL HR-pQCT pipeline to reliably assess and monitor local bone turnover in a cohort of patients with ESKD. We also demonstrated the importance of characterizing TL HR-pQCT precision metrics using longitudinal baseline/follow-up rather than short-term scan-rescan datasets. The TL HR-pQCT pipeline assessed a range of bone formation metrics consistent with the gold standard histomorphometric bone formation reported in the literature for patients with CKD and ESKD. Our findings highlight that TL HR-pQCT holds promise as a \"virtual bone biopsy\" that reliably assesses and monitors local bone turnover for CKD bone care. Subsequent work will focus on validating this TL HR-pQCT pipeline against the gold standard bone biopsy with quantitative histomorphometry.</p>","PeriodicalId":185,"journal":{"name":"Journal of Bone and Mineral Research","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-lapse HR-pQCT reliably assesses and monitors local bone turnover in patients with chronic kidney disease.\",\"authors\":\"Minhao Zhou, Saghi Sadoughi, Lauren Go, Gabriella Ramil, Isabel Yu, Isra Saeed, Bo Fan, Po-Hung Wu, Isidro B Salusky, Thomas L Nickolas, Joachim H Ix, Galateia J Kazakia\",\"doi\":\"10.1093/jbmr/zjaf006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone turnover assessment and monitoring are essential for chronic kidney disease (CKD)-associated bone care. Patients with CKD suffer from significantly elevated fracture risk due to abnormally high or low bone turnover, which requires diametrically opposite treatments informed by patient-specific bone turnover data. However, a reliable, accessible, non-invasive bone turnover assessment and monitoring tool remains an unmet clinical need. Combining time-lapse (TL) analysis with high-resolution peripheral quantitative computed tomography (HR-pQCT) scans obtained over time allows for in vivo temporospatial bone remodeling assessment. This study aimed to evaluate the feasibility of applying TL HR-pQCT to assess and monitor local bone formation and resorption in patients with CKD. A customized TL HR-pQCT pipeline was developed on a second-generation HR-pQCT platform and optimized using ex vivo cadaveric phantom and in vivo scan-rescan HR-pQCT images. The annualized least significant change in bone formation and resorption were evaluated using in vivo longitudinal reproducibility images. Finally, the feasibility of the TL HR-pQCT pipeline in assessing and monitoring bone turnover was evaluated in patients with end stage kidney disease (ESKD; n = 9). We found that a 2-month time-lapse period was sufficient for the TL HR-pQCT pipeline to reliably assess and monitor local bone turnover in a cohort of patients with ESKD. We also demonstrated the importance of characterizing TL HR-pQCT precision metrics using longitudinal baseline/follow-up rather than short-term scan-rescan datasets. The TL HR-pQCT pipeline assessed a range of bone formation metrics consistent with the gold standard histomorphometric bone formation reported in the literature for patients with CKD and ESKD. Our findings highlight that TL HR-pQCT holds promise as a \\\"virtual bone biopsy\\\" that reliably assesses and monitors local bone turnover for CKD bone care. Subsequent work will focus on validating this TL HR-pQCT pipeline against the gold standard bone biopsy with quantitative histomorphometry.</p>\",\"PeriodicalId\":185,\"journal\":{\"name\":\"Journal of Bone and Mineral Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone and Mineral Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jbmr/zjaf006\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jbmr/zjaf006","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Time-lapse HR-pQCT reliably assesses and monitors local bone turnover in patients with chronic kidney disease.
Bone turnover assessment and monitoring are essential for chronic kidney disease (CKD)-associated bone care. Patients with CKD suffer from significantly elevated fracture risk due to abnormally high or low bone turnover, which requires diametrically opposite treatments informed by patient-specific bone turnover data. However, a reliable, accessible, non-invasive bone turnover assessment and monitoring tool remains an unmet clinical need. Combining time-lapse (TL) analysis with high-resolution peripheral quantitative computed tomography (HR-pQCT) scans obtained over time allows for in vivo temporospatial bone remodeling assessment. This study aimed to evaluate the feasibility of applying TL HR-pQCT to assess and monitor local bone formation and resorption in patients with CKD. A customized TL HR-pQCT pipeline was developed on a second-generation HR-pQCT platform and optimized using ex vivo cadaveric phantom and in vivo scan-rescan HR-pQCT images. The annualized least significant change in bone formation and resorption were evaluated using in vivo longitudinal reproducibility images. Finally, the feasibility of the TL HR-pQCT pipeline in assessing and monitoring bone turnover was evaluated in patients with end stage kidney disease (ESKD; n = 9). We found that a 2-month time-lapse period was sufficient for the TL HR-pQCT pipeline to reliably assess and monitor local bone turnover in a cohort of patients with ESKD. We also demonstrated the importance of characterizing TL HR-pQCT precision metrics using longitudinal baseline/follow-up rather than short-term scan-rescan datasets. The TL HR-pQCT pipeline assessed a range of bone formation metrics consistent with the gold standard histomorphometric bone formation reported in the literature for patients with CKD and ESKD. Our findings highlight that TL HR-pQCT holds promise as a "virtual bone biopsy" that reliably assesses and monitors local bone turnover for CKD bone care. Subsequent work will focus on validating this TL HR-pQCT pipeline against the gold standard bone biopsy with quantitative histomorphometry.
期刊介绍:
The Journal of Bone and Mineral Research (JBMR) publishes highly impactful original manuscripts, reviews, and special articles on basic, translational and clinical investigations relevant to the musculoskeletal system and mineral metabolism. Specifically, the journal is interested in original research on the biology and physiology of skeletal tissues, interdisciplinary research spanning the musculoskeletal and other systems, including but not limited to immunology, hematology, energy metabolism, cancer biology, and neurology, and systems biology topics using large scale “-omics” approaches. The journal welcomes clinical research on the pathophysiology, treatment and prevention of osteoporosis and fractures, as well as sarcopenia, disorders of bone and mineral metabolism, and rare or genetically determined bone diseases.