一个简单的替代模型系统能否用于开发复杂分子的连续流动填充床加氢?

IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED
Stefano Martinuzzi, Martin Mex, Jelena Milic, Christopher A. Hone, C. Oliver Kappe
{"title":"一个简单的替代模型系统能否用于开发复杂分子的连续流动填充床加氢?","authors":"Stefano Martinuzzi, Martin Mex, Jelena Milic, Christopher A. Hone, C. Oliver Kappe","doi":"10.1021/acs.oprd.4c00411","DOIUrl":null,"url":null,"abstract":"Catalytic hydrogenations are key processes in the fine chemical and pharmaceutical industries, but the development of such processes is challenging due to aspects such as catalyst deactivation, metal leaching, mass transfer limitations, solubility issues, and the formation of side products. Processes are particularly difficult to develop when a substrate is a large molecule containing multiple functional groups. These difficulties are significant obstacles for the identification of robust operating conditions; thus, workflows are necessary to speed up development timelines. The use of a more cost-effective and commercially available surrogate in development is an alternative strategy to find the optimized conditions, which can then be subsequently validated on the real molecule only at a later stage in development. The approach we apply herein is designed to use less of the real compound while minimizing the perceived risk of failure when transferring the conditions to the complex molecule. In this article, we apply our workflow for the catalytic hydrogenolysis of a large glycopeptide molecule, Cbz-protected glycopeptide (Cbz-GP), in a packed bed reactor. As part of the workflow, we use a robustness screening approach, introduced by Collins and Glorius, to show that a surrogate molecule, Cbz-protected lysine (Cbz-Lys), in the presence of additives can mimic secondary functional groups present in Cbz-GP or represent residual impurities generated upstream in the synthesis of Cbz-GP. The data generated for Cbz-Lys enabled the identification of the operating conditions for the successful deprotection of Cbz-GP after minor modification. Gratifyingly, only a few additional experiments were necessary using the Cbz-protected GP molecule to modify the conditions to achieve >95% conversion under mild conditions and within <10 s of contact time for stable performance over >6 h operation time.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"31 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can a Simple Surrogate Model System Be Used to Develop a Continuous Flow Packed Bed Hydrogenation for a Complex Molecule?\",\"authors\":\"Stefano Martinuzzi, Martin Mex, Jelena Milic, Christopher A. Hone, C. Oliver Kappe\",\"doi\":\"10.1021/acs.oprd.4c00411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Catalytic hydrogenations are key processes in the fine chemical and pharmaceutical industries, but the development of such processes is challenging due to aspects such as catalyst deactivation, metal leaching, mass transfer limitations, solubility issues, and the formation of side products. Processes are particularly difficult to develop when a substrate is a large molecule containing multiple functional groups. These difficulties are significant obstacles for the identification of robust operating conditions; thus, workflows are necessary to speed up development timelines. The use of a more cost-effective and commercially available surrogate in development is an alternative strategy to find the optimized conditions, which can then be subsequently validated on the real molecule only at a later stage in development. The approach we apply herein is designed to use less of the real compound while minimizing the perceived risk of failure when transferring the conditions to the complex molecule. In this article, we apply our workflow for the catalytic hydrogenolysis of a large glycopeptide molecule, Cbz-protected glycopeptide (Cbz-GP), in a packed bed reactor. As part of the workflow, we use a robustness screening approach, introduced by Collins and Glorius, to show that a surrogate molecule, Cbz-protected lysine (Cbz-Lys), in the presence of additives can mimic secondary functional groups present in Cbz-GP or represent residual impurities generated upstream in the synthesis of Cbz-GP. The data generated for Cbz-Lys enabled the identification of the operating conditions for the successful deprotection of Cbz-GP after minor modification. Gratifyingly, only a few additional experiments were necessary using the Cbz-protected GP molecule to modify the conditions to achieve >95% conversion under mild conditions and within <10 s of contact time for stable performance over >6 h operation time.\",\"PeriodicalId\":55,\"journal\":{\"name\":\"Organic Process Research & Development\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Process Research & Development\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.oprd.4c00411\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.4c00411","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

催化加氢是精细化工和制药工业的关键工艺,但由于催化剂失活、金属浸出、传质限制、溶解度问题和副产物的形成等方面的原因,这种工艺的发展具有挑战性。当底物是含有多个官能团的大分子时,开发工艺特别困难。这些困难是确定稳健运行条件的重大障碍;因此,工作流对于加快开发进度是必要的。在开发过程中,使用更具成本效益和商业化的替代品是一种替代策略,可以找到最佳条件,然后只有在开发的后期阶段才能在真正的分子上进行验证。我们在此应用的方法旨在使用更少的实际化合物,同时最大限度地降低将条件转移到复杂分子时失败的感知风险。在这篇文章中,我们应用我们的工作流程在填充床反应器中催化氢解一个大的糖肽分子,cbz保护的糖肽(Cbz-GP)。作为工作流程的一部分,我们使用了Collins和Glorius介绍的稳健性筛选方法,以表明在添加剂存在的情况下,替代分子cbz -保护赖氨酸(Cbz-Lys)可以模拟Cbz-GP中存在的二级官能团或代表Cbz-GP合成过程中上游产生的残留杂质。为Cbz-Lys生成的数据能够在对Cbz-GP进行小修改后确定成功脱保护的操作条件。令人欣慰的是,只需要使用cbz保护的GP分子进行一些额外的实验来修改条件,在温和的条件下,在接触时间10秒内达到95%的转化率,在6小时的操作时间内性能稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Can a Simple Surrogate Model System Be Used to Develop a Continuous Flow Packed Bed Hydrogenation for a Complex Molecule?

Can a Simple Surrogate Model System Be Used to Develop a Continuous Flow Packed Bed Hydrogenation for a Complex Molecule?
Catalytic hydrogenations are key processes in the fine chemical and pharmaceutical industries, but the development of such processes is challenging due to aspects such as catalyst deactivation, metal leaching, mass transfer limitations, solubility issues, and the formation of side products. Processes are particularly difficult to develop when a substrate is a large molecule containing multiple functional groups. These difficulties are significant obstacles for the identification of robust operating conditions; thus, workflows are necessary to speed up development timelines. The use of a more cost-effective and commercially available surrogate in development is an alternative strategy to find the optimized conditions, which can then be subsequently validated on the real molecule only at a later stage in development. The approach we apply herein is designed to use less of the real compound while minimizing the perceived risk of failure when transferring the conditions to the complex molecule. In this article, we apply our workflow for the catalytic hydrogenolysis of a large glycopeptide molecule, Cbz-protected glycopeptide (Cbz-GP), in a packed bed reactor. As part of the workflow, we use a robustness screening approach, introduced by Collins and Glorius, to show that a surrogate molecule, Cbz-protected lysine (Cbz-Lys), in the presence of additives can mimic secondary functional groups present in Cbz-GP or represent residual impurities generated upstream in the synthesis of Cbz-GP. The data generated for Cbz-Lys enabled the identification of the operating conditions for the successful deprotection of Cbz-GP after minor modification. Gratifyingly, only a few additional experiments were necessary using the Cbz-protected GP molecule to modify the conditions to achieve >95% conversion under mild conditions and within <10 s of contact time for stable performance over >6 h operation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.90
自引率
14.70%
发文量
251
审稿时长
2 months
期刊介绍: The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信