{"title":"光子太赫兹混沌实现高精度和无二义测距","authors":"Qiuzhuo Deng, Lu Zhang, Zuomin Yang, Zhidong Lyu, Vjaceslavs Bobrovs, Xiaodan Pang, Oskars Ozolins, Xianbin Yu","doi":"10.1002/lpor.202400667","DOIUrl":null,"url":null,"abstract":"<p>Terahertz (THz, 0.3–10 THz) radar systems have garnered significant attention due to their superior capabilities in high-precision and robust sensing. However, the susceptibility to jamming, along with the sensing precision loss and ranging ambiguity induced by inflexible implementation of the conventional radar signal source, presents major challenges to the practical deployment of THz radars. Herein, a flexible photonic chaotic radar system is proposed at the THz band and investigate the ranging performance in precision and ambiguity. The photonic heterodyne detection scheme facilitates the generation of optoelectronic feedback loop-based THz chaos at 300 GHz, achieving a seamless connection between THz domains and optical domains. The system is experimentally demonstrated its superior performance of sub-centimeter resolution with 0.9345 cm and ranging unambiguity simultaneously. This work bridges the THz gap in the practical deployment of chaos theory and will pave the way for a new regime of THz radar empowered by chaos.</p>","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"19 8","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photonic Terahertz Chaos Enabling High-Precision and Unambiguous Ranging\",\"authors\":\"Qiuzhuo Deng, Lu Zhang, Zuomin Yang, Zhidong Lyu, Vjaceslavs Bobrovs, Xiaodan Pang, Oskars Ozolins, Xianbin Yu\",\"doi\":\"10.1002/lpor.202400667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Terahertz (THz, 0.3–10 THz) radar systems have garnered significant attention due to their superior capabilities in high-precision and robust sensing. However, the susceptibility to jamming, along with the sensing precision loss and ranging ambiguity induced by inflexible implementation of the conventional radar signal source, presents major challenges to the practical deployment of THz radars. Herein, a flexible photonic chaotic radar system is proposed at the THz band and investigate the ranging performance in precision and ambiguity. The photonic heterodyne detection scheme facilitates the generation of optoelectronic feedback loop-based THz chaos at 300 GHz, achieving a seamless connection between THz domains and optical domains. The system is experimentally demonstrated its superior performance of sub-centimeter resolution with 0.9345 cm and ranging unambiguity simultaneously. This work bridges the THz gap in the practical deployment of chaos theory and will pave the way for a new regime of THz radar empowered by chaos.</p>\",\"PeriodicalId\":204,\"journal\":{\"name\":\"Laser & Photonics Reviews\",\"volume\":\"19 8\",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser & Photonics Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202400667\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lpor.202400667","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Photonic Terahertz Chaos Enabling High-Precision and Unambiguous Ranging
Terahertz (THz, 0.3–10 THz) radar systems have garnered significant attention due to their superior capabilities in high-precision and robust sensing. However, the susceptibility to jamming, along with the sensing precision loss and ranging ambiguity induced by inflexible implementation of the conventional radar signal source, presents major challenges to the practical deployment of THz radars. Herein, a flexible photonic chaotic radar system is proposed at the THz band and investigate the ranging performance in precision and ambiguity. The photonic heterodyne detection scheme facilitates the generation of optoelectronic feedback loop-based THz chaos at 300 GHz, achieving a seamless connection between THz domains and optical domains. The system is experimentally demonstrated its superior performance of sub-centimeter resolution with 0.9345 cm and ranging unambiguity simultaneously. This work bridges the THz gap in the practical deployment of chaos theory and will pave the way for a new regime of THz radar empowered by chaos.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.