{"title":"北方森林恢复力对森林损益的不对称敏感性","authors":"Xiaoye Liu, Dashan Wang, Anping Chen, Zhenzhong Zeng","doi":"10.1038/s41559-024-02631-1","DOIUrl":null,"url":null,"abstract":"<p>Forest gains and losses may have unequal effects on forest resilience, particularly given their distinct temporal dynamics. Here, we quantify the sensitivities of boreal forest resilience to forest cover gain and loss using a resilience indicator derived from the temporal autocorrelation (TAC) of the kernel normalized difference vegetation index from 2000 to 2020. Our findings unveil pronounced asymmetric sensitivities, with stronger sensitivity to forest loss (−4.26 ± 0.14 × 10<sup>−3</sup>; TAC increase per 1% forest cover loss) than to forest gain (−1.65 ± 0.12 × 10<sup>−3</sup>; TAC decrease per 1% forest cover gain). Locally, ~73% of the boreal forest exhibits negative sensitivity, indicating enhanced resilience with forest cover gain and vice versa, especially in intact forests compared to managed ones. This sensitivity is affected by various trajectories in forest cover change, stemming primarily from temporal asynchrony in the recovery rates of various ecosystem functions. The observed asymmetry underscores the importance of prioritizing forest conservation over reactive management strategies following losses, ultimately contributing to more sustainable forest management practices.</p>","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"7 1","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric sensitivity of boreal forest resilience to forest gain and loss\",\"authors\":\"Xiaoye Liu, Dashan Wang, Anping Chen, Zhenzhong Zeng\",\"doi\":\"10.1038/s41559-024-02631-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Forest gains and losses may have unequal effects on forest resilience, particularly given their distinct temporal dynamics. Here, we quantify the sensitivities of boreal forest resilience to forest cover gain and loss using a resilience indicator derived from the temporal autocorrelation (TAC) of the kernel normalized difference vegetation index from 2000 to 2020. Our findings unveil pronounced asymmetric sensitivities, with stronger sensitivity to forest loss (−4.26 ± 0.14 × 10<sup>−3</sup>; TAC increase per 1% forest cover loss) than to forest gain (−1.65 ± 0.12 × 10<sup>−3</sup>; TAC decrease per 1% forest cover gain). Locally, ~73% of the boreal forest exhibits negative sensitivity, indicating enhanced resilience with forest cover gain and vice versa, especially in intact forests compared to managed ones. This sensitivity is affected by various trajectories in forest cover change, stemming primarily from temporal asynchrony in the recovery rates of various ecosystem functions. The observed asymmetry underscores the importance of prioritizing forest conservation over reactive management strategies following losses, ultimately contributing to more sustainable forest management practices.</p>\",\"PeriodicalId\":18835,\"journal\":{\"name\":\"Nature ecology & evolution\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature ecology & evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41559-024-02631-1\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41559-024-02631-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Asymmetric sensitivity of boreal forest resilience to forest gain and loss
Forest gains and losses may have unequal effects on forest resilience, particularly given their distinct temporal dynamics. Here, we quantify the sensitivities of boreal forest resilience to forest cover gain and loss using a resilience indicator derived from the temporal autocorrelation (TAC) of the kernel normalized difference vegetation index from 2000 to 2020. Our findings unveil pronounced asymmetric sensitivities, with stronger sensitivity to forest loss (−4.26 ± 0.14 × 10−3; TAC increase per 1% forest cover loss) than to forest gain (−1.65 ± 0.12 × 10−3; TAC decrease per 1% forest cover gain). Locally, ~73% of the boreal forest exhibits negative sensitivity, indicating enhanced resilience with forest cover gain and vice versa, especially in intact forests compared to managed ones. This sensitivity is affected by various trajectories in forest cover change, stemming primarily from temporal asynchrony in the recovery rates of various ecosystem functions. The observed asymmetry underscores the importance of prioritizing forest conservation over reactive management strategies following losses, ultimately contributing to more sustainable forest management practices.
Nature ecology & evolutionAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
22.20
自引率
2.40%
发文量
282
期刊介绍:
Nature Ecology & Evolution is interested in the full spectrum of ecological and evolutionary biology, encompassing approaches at the molecular, organismal, population, community and ecosystem levels, as well as relevant parts of the social sciences. Nature Ecology & Evolution provides a place where all researchers and policymakers interested in all aspects of life's diversity can come together to learn about the most accomplished and significant advances in the field and to discuss topical issues. An online-only monthly journal, our broad scope ensures that the research published reaches the widest possible audience of scientists.