{"title":"口服补充剂中的锌纳米颗粒在肾肿瘤中积聚并激发抗肿瘤免疫反应","authors":"Xin Zeng, Zhenzhu Wang, An Zhao, Yiqi Wu, Zongping Wang, Aiwen Wu, Qing Wang, Xin Xia, Xichen Chen, Wene Zhao, Bozhao Li, Zefang Lu, Qiaoli Lv, Guorong Li, Zhixiang Zuo, Fengrui Wu, Yuliang Zhao, Ting Wang, Guangjun Nie, Suping Li, Gen Zhang","doi":"10.1038/s41563-024-02093-7","DOIUrl":null,"url":null,"abstract":"<p>A successful therapeutic outcome in the treatment of solid tumours requires efficient intratumoural drug accumulation and retention. Here we demonstrate that zinc gluconate in oral supplements assembles with plasma proteins to form ZnO nanoparticles that selectively accumulate into papillary Caki-2 renal tumours and promote the recruitment of dendritic cells and cytotoxic CD8<sup>+</sup> T cells to tumour tissues. Renal tumour targeting is mediated by the preferential binding of zinc ions to metallothionein-1X proteins, which are constitutively overexpressed in Caki-2 renal tumour cells. This binding event further upregulates intracellular metallothionein-1X expression to induce additional nanoparticle binding and retention. In both tumour animal models and human renal tumour samples, we show that ZnO nanoparticles actively cross the vascular wall to achieve high intratumoural accumulation. We further explore this feature of ZnO nanoparticles for the delivery of chemotherapeutics to mouse and rabbit cancer models. Our findings demonstrate that ZnO nanoparticles derived from supplements can serve as a multifunctional drug delivery and cancer immunotherapy platform.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"118 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zinc nanoparticles from oral supplements accumulate in renal tumours and stimulate antitumour immune responses\",\"authors\":\"Xin Zeng, Zhenzhu Wang, An Zhao, Yiqi Wu, Zongping Wang, Aiwen Wu, Qing Wang, Xin Xia, Xichen Chen, Wene Zhao, Bozhao Li, Zefang Lu, Qiaoli Lv, Guorong Li, Zhixiang Zuo, Fengrui Wu, Yuliang Zhao, Ting Wang, Guangjun Nie, Suping Li, Gen Zhang\",\"doi\":\"10.1038/s41563-024-02093-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A successful therapeutic outcome in the treatment of solid tumours requires efficient intratumoural drug accumulation and retention. Here we demonstrate that zinc gluconate in oral supplements assembles with plasma proteins to form ZnO nanoparticles that selectively accumulate into papillary Caki-2 renal tumours and promote the recruitment of dendritic cells and cytotoxic CD8<sup>+</sup> T cells to tumour tissues. Renal tumour targeting is mediated by the preferential binding of zinc ions to metallothionein-1X proteins, which are constitutively overexpressed in Caki-2 renal tumour cells. This binding event further upregulates intracellular metallothionein-1X expression to induce additional nanoparticle binding and retention. In both tumour animal models and human renal tumour samples, we show that ZnO nanoparticles actively cross the vascular wall to achieve high intratumoural accumulation. We further explore this feature of ZnO nanoparticles for the delivery of chemotherapeutics to mouse and rabbit cancer models. Our findings demonstrate that ZnO nanoparticles derived from supplements can serve as a multifunctional drug delivery and cancer immunotherapy platform.</p>\",\"PeriodicalId\":19058,\"journal\":{\"name\":\"Nature Materials\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":37.2000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41563-024-02093-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-024-02093-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Zinc nanoparticles from oral supplements accumulate in renal tumours and stimulate antitumour immune responses
A successful therapeutic outcome in the treatment of solid tumours requires efficient intratumoural drug accumulation and retention. Here we demonstrate that zinc gluconate in oral supplements assembles with plasma proteins to form ZnO nanoparticles that selectively accumulate into papillary Caki-2 renal tumours and promote the recruitment of dendritic cells and cytotoxic CD8+ T cells to tumour tissues. Renal tumour targeting is mediated by the preferential binding of zinc ions to metallothionein-1X proteins, which are constitutively overexpressed in Caki-2 renal tumour cells. This binding event further upregulates intracellular metallothionein-1X expression to induce additional nanoparticle binding and retention. In both tumour animal models and human renal tumour samples, we show that ZnO nanoparticles actively cross the vascular wall to achieve high intratumoural accumulation. We further explore this feature of ZnO nanoparticles for the delivery of chemotherapeutics to mouse and rabbit cancer models. Our findings demonstrate that ZnO nanoparticles derived from supplements can serve as a multifunctional drug delivery and cancer immunotherapy platform.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.