Tao Liu, Lianqin Wang, Bin Chen, Haotian Liu, Sipu Wang, Yingjie Feng, Junfeng Zhang, Yan Yin, Guiver Michael
{"title":"Modulating Built-In Electric Field Strength in Ru/RuO2 Interfaces through Ni Doping to Enhance Hydrogen Conversion at Ampere-level Current","authors":"Tao Liu, Lianqin Wang, Bin Chen, Haotian Liu, Sipu Wang, Yingjie Feng, Junfeng Zhang, Yan Yin, Guiver Michael","doi":"10.1002/anie.202421869","DOIUrl":null,"url":null,"abstract":"Improving the alkaline hydrogen evolution reaction (HER) efficiency is essential for developing advanced anion exchange membrane water electrolyzers (AEMWEs) that operate at industrial ampere-level currents. Herein, we employ density functional theory (DFT) calculations to identify Ni-RuO2 as the leading candidate among various 3d transition metal-doped M-RuO2 (where metal M includes Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn). The incorporation of Ni atoms facilitates the partial reduction of RuO2, resulting in the formation of a Ni-Ru/RuO2 interface having a significant built-in electric field (BIEF) during electrochemical reactions. The resulted BIEF enhances electron transfer across the interface, which is critical in lowering energy barriers and accelerating the hydrogen evolution reaction (HER) kinetics. As a result, the Ni-RuO2 catalyst exhibits an overpotential of 134 mV at 1 A cm-2 and a low Tafel slope of 20.85 mV dec-1, with just 0.03 mg cm-2 of Ru loading. The highly effective BIEF, therefore, plays a pivotal role in the catalyst's remarkable performance, allowing the Ni-RuO2-based AEMWE to require only 1.71V to maintain stable operation at 1 A cm-2 over a 1000-hour period.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"9 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202421869","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Modulating Built-In Electric Field Strength in Ru/RuO2 Interfaces through Ni Doping to Enhance Hydrogen Conversion at Ampere-level Current
Improving the alkaline hydrogen evolution reaction (HER) efficiency is essential for developing advanced anion exchange membrane water electrolyzers (AEMWEs) that operate at industrial ampere-level currents. Herein, we employ density functional theory (DFT) calculations to identify Ni-RuO2 as the leading candidate among various 3d transition metal-doped M-RuO2 (where metal M includes Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn). The incorporation of Ni atoms facilitates the partial reduction of RuO2, resulting in the formation of a Ni-Ru/RuO2 interface having a significant built-in electric field (BIEF) during electrochemical reactions. The resulted BIEF enhances electron transfer across the interface, which is critical in lowering energy barriers and accelerating the hydrogen evolution reaction (HER) kinetics. As a result, the Ni-RuO2 catalyst exhibits an overpotential of 134 mV at 1 A cm-2 and a low Tafel slope of 20.85 mV dec-1, with just 0.03 mg cm-2 of Ru loading. The highly effective BIEF, therefore, plays a pivotal role in the catalyst's remarkable performance, allowing the Ni-RuO2-based AEMWE to require only 1.71V to maintain stable operation at 1 A cm-2 over a 1000-hour period.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.