Soo-Ji Park, Sungjin Ju, Won Jun Jung, Tae Yeong Jeong, Da Eun Yoon, Jang Hyeon Lee, Jiyun Yang, Hojin Lee, Jungmin Choi, Hyeon Soo Kim, Kyoungmi Kim
{"title":"Robust genome editing activity and the applications of enhanced miniature CRISPR-Cas12f1","authors":"Soo-Ji Park, Sungjin Ju, Won Jun Jung, Tae Yeong Jeong, Da Eun Yoon, Jang Hyeon Lee, Jiyun Yang, Hojin Lee, Jungmin Choi, Hyeon Soo Kim, Kyoungmi Kim","doi":"10.1038/s41467-025-56048-w","DOIUrl":null,"url":null,"abstract":"<p>With recent advancements in gene editing technology using the CRISPR/Cas system, there is a demand for more effective gene editors. A key factor facilitating efficient gene editing is effective CRISPR delivery into cells, which is known to be associated with the size of the CRISPR system. Accordingly, compact CRISPR-Cas systems derived from various strains are discovered, among which Un1Cas12f1 is 2.6 times smaller than SpCas9, providing advantages for gene therapy research. Despite extensive engineering efforts to improve Un1Cas12f1, the editing efficiency of Un1Cas12f1 is still shown to be low depending on the target site. To overcome this limitation, we develop enhanced Cas12f1 (eCas12f1), which exhibits gene editing activity similar to SpCas9 and AsCpf1, even in gene targets where previously improved Un1Cas12f1 variants showed low gene editing efficiency. Furthermore, we demonstrate that eCas12f1 efficiently induces apoptosis in cancer cells and is compatible with base editing and regulation of gene expression, verifying its high utility and applicability in gene therapy research.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"3 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56048-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Robust genome editing activity and the applications of enhanced miniature CRISPR-Cas12f1
With recent advancements in gene editing technology using the CRISPR/Cas system, there is a demand for more effective gene editors. A key factor facilitating efficient gene editing is effective CRISPR delivery into cells, which is known to be associated with the size of the CRISPR system. Accordingly, compact CRISPR-Cas systems derived from various strains are discovered, among which Un1Cas12f1 is 2.6 times smaller than SpCas9, providing advantages for gene therapy research. Despite extensive engineering efforts to improve Un1Cas12f1, the editing efficiency of Un1Cas12f1 is still shown to be low depending on the target site. To overcome this limitation, we develop enhanced Cas12f1 (eCas12f1), which exhibits gene editing activity similar to SpCas9 and AsCpf1, even in gene targets where previously improved Un1Cas12f1 variants showed low gene editing efficiency. Furthermore, we demonstrate that eCas12f1 efficiently induces apoptosis in cancer cells and is compatible with base editing and regulation of gene expression, verifying its high utility and applicability in gene therapy research.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.