{"title":"All-Optical Single-Channel Plasmonic Logic Gates","authors":"Zong-Kun Zhang, Teng Zhang, Ming-Zhe Chong, Zhibo Dang, Yuchen Dai, Haoyu Shang, Yiwen Zhou, Zhipeng Zheng, Han Zhang, Pu-Kun Liu, Ming-Yao Xia, Xiaofei Zang, Zheyu Fang","doi":"10.1021/acs.nanolett.4c04954","DOIUrl":null,"url":null,"abstract":"Optical computing, renowned for its light-speed processing and low power consumption, typically relies on the coherent control of two light sources. However, there are challenges in stabilizing and maintaining high optical spatiotemporal coherence, especially for large-scale computing systems. The coherence requires rigorous feedback circuits and numerous phase shifters, introducing system instability and complexity. Here we propose an innovative logic gate using a single light source, with frequency and polarization serving as two virtual inputs. Our design leverages frequency-polarization multiplexed metasurfaces to achieve all basic logic operations by selectively routing surface plasmon polaritons. This single-channel logic gate maintains inherent coherence between frequency and polarization, thereby considerably eliminating stringent light-source specifications and numerous rigid phase controls and resulting in higher stability. Our device showcases unique application potentials in on-chip readout of encryption information by using random sequences as a one-time pad, unlocking fresh prospects for information protection and optical computing with other simple light sources.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"85 4 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04954","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optical computing, renowned for its light-speed processing and low power consumption, typically relies on the coherent control of two light sources. However, there are challenges in stabilizing and maintaining high optical spatiotemporal coherence, especially for large-scale computing systems. The coherence requires rigorous feedback circuits and numerous phase shifters, introducing system instability and complexity. Here we propose an innovative logic gate using a single light source, with frequency and polarization serving as two virtual inputs. Our design leverages frequency-polarization multiplexed metasurfaces to achieve all basic logic operations by selectively routing surface plasmon polaritons. This single-channel logic gate maintains inherent coherence between frequency and polarization, thereby considerably eliminating stringent light-source specifications and numerous rigid phase controls and resulting in higher stability. Our device showcases unique application potentials in on-chip readout of encryption information by using random sequences as a one-time pad, unlocking fresh prospects for information protection and optical computing with other simple light sources.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.