Zhengxing Li, Zhongyuan Guo, Fangyu Zhang, Lei Sun, Hao Luan, Zheng Fang, Jeramy L. Dedrick, Yichen Zhang, Christine Tang, Audrey Zhu, Yiyan Yu, Shichao Ding, Dan Wang, An-Yi Chang, Lu Yin, Lynn M. Russell, Weiwei Gao, Ronnie H. Fang, Liangfang Zhang, Joseph Wang
{"title":"可吸入的生物混合微型机器人:一种非侵入性的肺部治疗方法","authors":"Zhengxing Li, Zhongyuan Guo, Fangyu Zhang, Lei Sun, Hao Luan, Zheng Fang, Jeramy L. Dedrick, Yichen Zhang, Christine Tang, Audrey Zhu, Yiyan Yu, Shichao Ding, Dan Wang, An-Yi Chang, Lu Yin, Lynn M. Russell, Weiwei Gao, Ronnie H. Fang, Liangfang Zhang, Joseph Wang","doi":"10.1038/s41467-025-56032-4","DOIUrl":null,"url":null,"abstract":"<p>Amidst the rising prevalence of respiratory diseases, the importance of effective lung treatment modalities is more critical than ever. However, current drug delivery systems face significant limitations that impede their efficacy and therapeutic outcome. Biohybrid microrobots have shown considerable promise for active in vivo drug delivery, especially for pulmonary applications via intratracheal routes. However, the invasive nature of intratracheal administration poses barriers to its clinical translation. Herein, we report on an efficient non-invasive inhalation-based method of delivering microrobots to the lungs. A nebulizer is employed to encapsulate picoeukaryote algae microrobots within small aerosol particles, enabling them to reach the lower respiratory tract. Post nebulization, the microrobots retain their motility (~55 μm s<sup>-1</sup>) to help achieve a homogeneous lung distribution and long-term retention exceeding five days in the lungs. Therapeutic efficacy is demonstrated in a mouse model of acute methicillin-resistant <i>Staphylococcus aureus</i> pneumonia using this pulmonary inhalation approach to deliver microrobots functionalized with platelet membrane-coated polymeric nanoparticles loaded with vancomycin. These promising findings underscore the benefits of inhalable biohybrid microrobots in a setting that does not require anesthesia, highlighting the substantial translational potential of this delivery system for routine clinical applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"31 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhalable biohybrid microrobots: a non-invasive approach for lung treatment\",\"authors\":\"Zhengxing Li, Zhongyuan Guo, Fangyu Zhang, Lei Sun, Hao Luan, Zheng Fang, Jeramy L. Dedrick, Yichen Zhang, Christine Tang, Audrey Zhu, Yiyan Yu, Shichao Ding, Dan Wang, An-Yi Chang, Lu Yin, Lynn M. Russell, Weiwei Gao, Ronnie H. Fang, Liangfang Zhang, Joseph Wang\",\"doi\":\"10.1038/s41467-025-56032-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Amidst the rising prevalence of respiratory diseases, the importance of effective lung treatment modalities is more critical than ever. However, current drug delivery systems face significant limitations that impede their efficacy and therapeutic outcome. Biohybrid microrobots have shown considerable promise for active in vivo drug delivery, especially for pulmonary applications via intratracheal routes. However, the invasive nature of intratracheal administration poses barriers to its clinical translation. Herein, we report on an efficient non-invasive inhalation-based method of delivering microrobots to the lungs. A nebulizer is employed to encapsulate picoeukaryote algae microrobots within small aerosol particles, enabling them to reach the lower respiratory tract. Post nebulization, the microrobots retain their motility (~55 μm s<sup>-1</sup>) to help achieve a homogeneous lung distribution and long-term retention exceeding five days in the lungs. Therapeutic efficacy is demonstrated in a mouse model of acute methicillin-resistant <i>Staphylococcus aureus</i> pneumonia using this pulmonary inhalation approach to deliver microrobots functionalized with platelet membrane-coated polymeric nanoparticles loaded with vancomycin. These promising findings underscore the benefits of inhalable biohybrid microrobots in a setting that does not require anesthesia, highlighting the substantial translational potential of this delivery system for routine clinical applications.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-56032-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56032-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Inhalable biohybrid microrobots: a non-invasive approach for lung treatment
Amidst the rising prevalence of respiratory diseases, the importance of effective lung treatment modalities is more critical than ever. However, current drug delivery systems face significant limitations that impede their efficacy and therapeutic outcome. Biohybrid microrobots have shown considerable promise for active in vivo drug delivery, especially for pulmonary applications via intratracheal routes. However, the invasive nature of intratracheal administration poses barriers to its clinical translation. Herein, we report on an efficient non-invasive inhalation-based method of delivering microrobots to the lungs. A nebulizer is employed to encapsulate picoeukaryote algae microrobots within small aerosol particles, enabling them to reach the lower respiratory tract. Post nebulization, the microrobots retain their motility (~55 μm s-1) to help achieve a homogeneous lung distribution and long-term retention exceeding five days in the lungs. Therapeutic efficacy is demonstrated in a mouse model of acute methicillin-resistant Staphylococcus aureus pneumonia using this pulmonary inhalation approach to deliver microrobots functionalized with platelet membrane-coated polymeric nanoparticles loaded with vancomycin. These promising findings underscore the benefits of inhalable biohybrid microrobots in a setting that does not require anesthesia, highlighting the substantial translational potential of this delivery system for routine clinical applications.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.